For PubMed publication links from the Sapkota Lab, please click here.

Individual publications appear below in reverse chronological order.

58. Sathe G, Sapkota GP. (2023) Proteomic approaches advancing targeted protein degradation. Trends Pharmacol Sci. 2023 Sep 29:S0165-6147(23)00177-3. doi: 10.1016/ PMID: 37778939 [full text][pdf]

57. Daniels D, Sapkota G, Jones L (2023). The promise of targeted protein degradation approaches. Trends Pharmacol Sci. 2023 Sep 27:S0165-6147(23)00185-2. doi: 10.1016/ Online ahead of print. PMID: 37775456 [full text][pdf]

56. Röth S, Kocaturk NM, Sathyamurthi PS, Carton B, Watt M, Macartney TJ, Chan KH, Isidro-Llobet A, Konopacka A, Queisser MA, & Sapkota GP (2023). Identification of KLHDC2 as an efficient proximity-induced degrader of K-RAS, STK33, β-catenin, and FoxP3. Cell Chem Biol. 2023 Aug 9:S2451-9456(23)00233-7. doi: 10.1016/j.chembiol.2023.07.006. PMID: 37591251 [full text][pdf]

55. Carton B, Röth S, Macartney TJ, Sapkota GP (2023) Harnessing nanobodies for target protein degradation through the Affinity-directed PROtein Missile (AdPROM) system. Methods Enzymol. 2023;681:61-79. doi: 10.1016/bs.mie.2022.08.011. Epub 2022 Sep 13. PMID: 36764764. [full text][pdf]

54. Simpson LM, Fulcher LJ, Sathe G, Brewer A, Zhao JF, Squair DR, Crooks J, Wightman M, Wood NT, Gourlay R, Varghese J, Soares RF, Sapkota GP (2023) An affinity-directed phosphatase, AdPhosphatase, system for targeted protein dephosphorylation. Cell Chem Biol. 2023 Feb 16;30(2):188-202.e6. doi: 10.1016/j.chembiol.2023.01.003. Epub 2023 Jan 30. PMID: 36720221 [Full text][pdf]

53. Simpson LM, Glennie L, Brewer A, Zhao JF, Crooks J, Shpiro N, Sapkota GP. (2022). Target protein localization and its impact on PROTAC-mediated degradation. Cell Chem Biol. 2022 Oct 20;29(10):1482-1504.e7. doi: 10.1016/j.chembiol.2022.08.004. Epub 2022 Sep 7. PMID: 36075213 [Full text][pdf]

52. Stacey P, Lithgow H, Lewell X, Konopacka A, Besley S, Green G, Whatling R, Law R, Röth S, Sapkota GP, Smith IED, Burley GA, Harling J, Benowitz AB, Queisser MA, Muelbaier M. (2021) A Phenotypic Approach for the Identification of New Molecules for Targeted Protein Degradation Applications. SLAS Discov. 2021 Aug;26(7):885-895. doi: 10.1177/24725552211017517. Epub 2021 May 27. PMID: 34041938. [Full text][pdf]

51. Dunbar K, Jones RA, Dingwell K, Macartney TJ, Smith JC, Sapkota GP (2020). FAM83F regulates canonical Wnt signalling through an interaction with CK1α. Life Sci Alliance. 2020 Dec 24;4(2):e202000805. doi: 10.26508/lsa.202000805. Print 2021 Feb. PMID: 33361109. [Pubmed][pdf]

50. Dunbar K, Macartney TJ, Sapkota GP (2020). IMiDs induce FAM83F degradation via an interaction with CK1α to attenuate Wnt signalling. Life Sci Alliance. 2020 Dec 23;4(2):e202000804. doi: 10.26508/lsa.202000804. Print 2021 Feb. PMID: 33361334. [Pubmed][pdf]

49. Fulcher LJ, Sapkota GP (2020). Functions and regulation of the serine/threonine protein kinase CK1 family: moving beyond promiscuity. Biochem J. 2020 Dec 11;477(23):4603-4621. PMID: 33306089 DOI: 10.1042/BCJ20200506[Pubmed][pdf]

48. Simpson LM, Macartney TJ, Nardin A, Fulcher LJ, Röth S, Testa A, Maniaci C, Ciulli A, Ganley IG, & Sapkota GP (2020). Inducible Degradation of Target Proteins through a Tractable Affinity-Directed Protein Missile System. Cell Chem Biol. 2020 Jul 3: S2451-9456(20)30236-1. doi: 10.1016/j.chembiol.2020.06.013. Online ahead of print. (PMID: 32668203)[Pubmed][pdf]

47. Röth S, Macartney TJ, Konopacka A, Chan KH, Zhou H, Queisser MA, & Sapkota GP (2020). Targeting Endogenous K-RAS for Degradation through the Affinity-Directed Protein Missile System. Cell Chem Biol. 2020 Jul 3: S2451-9456(20)30235-X. doi: 10.1016/j.chembiol.2020.06.012. Online ahead of print. (PMID: 32668202)[Pubmed][pdf]

46. Tachie-Menson T, Gázquez-Gutiérrez A, Fulcher LJ, Macartney TJ, Wood NT, Varghese J, Gourlay R, Soares RF, Sapkota GP. (2020) Characterisation of the biochemical and cellular roles of native and pathogenic amelogenesis imperfecta mutants of FAM83H. Cell Signal. 2020 Aug;72:109632. doi: 10.1016/j.cellsig.2020.109632. Epub 2020 Apr 11. PMID: 32289446 [Pubmed][pdf]

45. Fulcher LJ, Sapkota GP. (2020) Mitotic kinase anchoring proteins: the navigators of cell division. Cell Cycle. 2020 Mar;19(5):505-524. doi: 10.1080/15384101.2020.1728014. Epub 2020 Feb 12. PMID: 32048898 [Pubmed][pdf]

44. Hutchinson L.D., Darling, N.J., Nicolaou S., Gori I., Squair D.R., Cohen P., Hill C.S. and Sapkota G.P. (2020) Salt-inducible kinases (SIKs) regulate TGFβ-mediated transcriptional and apoptotic responses Cell Death & Disease, Jan 22;11(1):49. doi: 10.1038/s41419-020-2241-6. [Pubmed][pdf]

43. Wu KZL, Jones RA, Tachie-Menson T, Macartney TJ, Wood NT, Varghese J, Gourlay R, Soares RF, Smith JC, Sapkota GP. (2019) Pathogenic FAM83G palmoplantar keratoderma mutations inhibit the PAWS1:CK1α association and attenuate Wnt signalling. Wellcome Open Res. 2019 Sep 9;4:133. doi: 10.12688/wellcomeopenres.15403.1. eCollection 2019. [Pubmed][pdf]

42. Fulcher LJ, He Z, Mei L, Macartney TJ, Wood NT, Prescott AR, Whigham AJ, Varghese J, Gourlay R, Ball G, Clarke R, Campbell DG, Maxwell CA, and Sapkota GP (2019) FAM83D directs protein kinase CK1α to the mitotic spindle for proper spindle positioning. EMBO Rep. 2019 Jul 24:e47495. doi: 10.15252/embr.201847495. [Pubmed][pdf]

41. Röth S, Fulcher LJ, Sapkota GP (2019) Advances in targeted degradation of endogenous proteins. Cell Mol Life Sci. 2019 Apr 27. doi: 10.1007/s00018-019-03112-6. [Pubmed][pdf]

40. Hutchinson, L. D., Bozatzi, P., Macartney, T. J., and Sapkota, G. P. (2019). Generation of endogenous BMP transcriptional reporter cells through CRISPR/Cas9 genome editing. Methods Mol Biol 2019;1891:29-35. doi: 10.1007/978-1-4939-8904-1_4. [Pubmed]

39. Bozatzi, P., and Sapkota, G.P. (2018) The FAM83 family of proteins: from pseudo-PLDs to anchors of CK1 isoforms. Biochem Soc Trans,

38. Fulcher, L. J., Bozatzi, P., Tachie-Menson, T., Cummins, T. D., Wu, K., Dunbar, K., Shrestha, S., Wood, N., Weidlich, S., Macartney, T. J., Varghese, J., Gourlay, R., Campbell, D. G., Dingwell, K. S., Smith, J. C., Bullock, A., and Sapkota, G. P. (2018) The DUF1669 domain of FAM83 family proteins anchor Casein Kinase 1 isoforms. Sci signalling, Vol. 11, Issue 531, eaao2341 DOI: 10.1126/scisignal.aao2341 [Full Text][pdf]

37. Bozatzi, P., Dingwell, K. S., Wu, K., Cooper, F., Cummins, T. D., Vogt, J., Wood, N., Macartney, T. J., Varghese, J., Gourlay, R., Campbell, D. G., Smith, J. C., and Sapkota, G. P. (2018) PAWS1/FAM83G controls Wnt signalling through association with Casein Kinase 1 alpha. Embo reports, , [Full Text][pdf]

36. Ramachandran, A., Vizan, P., Das, D., Chakravarty, P., Vogt, J., Rogers, K.W., Müller, P., Hinck, A.P., Sapkota, G.P., and Hill, C.S. (2018) TGF-β uses a novel mode of receptor activation to phosphorylate SMAD1/5 and induce epithelial-to-mesenchymal transition. Elife. Jan 29;7. pii: e31756. doi: 10.7554/eLife.31756. [Full Text] [pdf]

35. Cummins, T. D., Wu, K. Z. L., Bozatzi, P., Dingwell, K. S., Macartney, T. J., Wood, N. T., Varghese, J., Gourlay, R., Campbell, D. G., Prescott, A., Griffis, E., Smith, J. C., and Sapkota, G. P. (2018) FAM83G/PAWS1 controls cytoskeletal dynamics and cell migration through association with the SH3 adaptor CD2AP. J Cell Sci Jan 10;131(1) [Full Text] [pdf]

34. Fernandez-Alonso, R., Davidson, L., Hukelmann, J., Zengerle, M., Prescott, A. R., Lamond, A., Ciulli, A., Sapkota, G. P. and Findlay, G. M. (2017). Brd2-4 functional dynamics coordinate pluripotent exit with Smad2-dependent lineage specification. EMBO Rep Jul;18(7):1108-1122. [Full Text] [pdf]

33. Cummins T.D., Sapkota, G.P. (2017). Characterization of Protein Complexes Using Chemical Cross-Linking Coupled Electrospray Mass Spectrometry. Methods Mol Biol. 2017 Oct 25. [Full Text] [pdf]

32. Macartney, T.J., Sapkota, G.P. and Fulcher, L.J. (2017) An Affinity-directed Protein Missile (AdPROM) System for Targeted Destruction of Endogenous Proteins. Vol 7, Iss 22, November 20, 2017 [Full Text] [pdf]

31. Fulcher, L. J., Macartney, T. J., Turnbull, C., Hutchinson, L., and Sapkota, G. P. (2017) Targeting endogenous proteins for degradation through the affinity-directed protein missile system. Open biology, 7: 170066. [Full Text] [pdf]

30. Fulcher, L. J., Macartney, T., Bozatzi, P., Hornberger, A., Rojas-Fernandez, A., and Sapkota, G. P. (2016) An affinity-directed protein missile system for targeted proteolysis. Open biology, 6: 160255 [Full Text] [pdf]

29. Cammareri, P., Rose, A. M., Vincent, D. F., Wang, J., Nagano, A., Libertini, S., Ridgway, R. A., Athineos, D., Coates, P. J., McHugh, A., Pourreyron, C., Dayal, J. H., Larsson, J., Weidlich, S., Spender, L. C., Sapkota, G. P., Purdie, K. J., Proby, C. M., Harwood, C. A., Leigh, I. M., Clevers, H., Barker, N., Karlsson, S., Pritchard, C., Marais, R., Chelala, C., South, A. P., Sansom, O. J. and Inman, G. J. (2016). Inactivation of TGFbeta receptors in stem cells drives cutaneous squamous cell carcinoma. Nat Commun 7, pp. 12493 [Full Text] [pdf]

28. Rojas-Fernandez, A., Herhaus, L., Macartney, T., Lachaud, C., Hay, R. T., and Sapkota, G. P. (2015) Rapid generation of endogenously driven transcriptional reporters in cells through CRISPR/Cas9. Sci Rep 5, 9811 [Full Text] [pdf]

27. Herhaus, L., Perez-Oliva, A. B., Cozza, G., Gourlay, R., Weidlich, S., Campbell, D. G., Pinna, L. A., and Sapkota, G. P. (2015) Casein kinase 2 (CK2) phosphorylates the deubiquitylase OTUB1 at Ser16 to trigger its nuclear localization. Sci Signal 8, ra35 [Full Text] [pdf]

26. Tan, L., Nomanbhoy, T., Gurbani, D., Patricelli, M., Hunter, J., Geng, J., Herhaus, L., Zhang, J., Pauls, E., Ham, Y., Choi, H. G., Xie, T., Deng, X., Buhrlage, S. J., Sim, T., Cohen, P., Sapkota, G. P., Westover, K. D. and Gray, N. S. (2015) Discovery of type II inhibitors of TGFβ-activated kinase 1 (TAK1) and mitogen-activated protein kinase kinase kinase kinase 2 (MAP4K2). J Med Chem. 2015 Jan 8;58(1):183-96. doi: 10.1021/jm500480k. [Full Text] [pdf]

25. Herhaus, L., and Sapkota, G. P. (2014) The emerging roles of deubiquitylating enzymes (DUBs) in the TGFbeta and BMP pathways. Cell Signal 26, 2186-2192 [Full Text] [pdf]

24. Herhaus, L., Al-Salihi, M. A., Dingwell, K. S., Cummins, T. D., Wasmus, L., Vogt, J., Ewan, R., Bruce, D., Macartney, T., Weidlich, S., Smith, J. C., and Sapkota, G. P. (2014) USP15 targets ALK3/BMPR1A for deubiquitylation to enhance bone morphogenetic protein signalling. Open biology 4, 140065 [Full Text] [pdf]

23. Vogt, J., Dingwell, K. S., Herhaus, L., Gourlay, R., Macartney, T., Campbell, D., Smith, J. C., and Sapkota, G. P. (2014) Protein associated with SMAD1 (PAWS1/FAM83G) is a substrate for type I bone morphogenetic protein receptors and modulates bone morphogenetic protein signalling. Open biology 4, 130210 [Full Text] [pdf]

22. Herhaus, L., Al-Salihi, M., Macartney, T., Weidlich, S., and Sapkota, G. P. (2013) OTUB1 enhances TGFbeta signalling by inhibiting the ubiquitylation and degradation of active SMAD2/3. Nature communications 4, 2519 [Full Text] [pdf]

21. Sapkota, G. P. (2013) The TGF-beta-induced phosphorylation and activation of p38 mitogen-activated protein kinase is mediated by MAP3K4 and MAP3K10 but not TAK1. Open biology 3, 130067 [Full Text] [pdf]

20. Bruce, D. L. and Sapkota, G. P. (2012). Phosphatases in SMAD regulation. FEBS letters 586, pp. 1897-1905 [Full Text] [pdf]

19. Bruce, D. L., Macartney, T., Yong, W., Shou, W., and Sapkota, G. P. (2012) Protein phosphatase 5 modulates SMAD3 function in the transforming growth factor-beta pathway. Cell Signal 24, 1999-2006 [Full Text] [pdf]

18. Al-Salihi, M. A., Herhaus, L., and Sapkota, G. P. (2012) Regulation of the transforming growth factor beta pathway by reversible ubiquitylation. Open biology 2, 120082 [Full Text] [pdf]

17. Al-Salihi, M. A., Herhaus, L., Macartney, T., and Sapkota, G. P. (2012) USP11 augments TGFbeta signalling by deubiquitylating ALK5. Open biology 2, 120063 [Full Text] [pdf]

16. Vogt, J., Traynor, R. and Sapkota, G. P. (2011). The specificities of small molecule inhibitors of the TGFß and BMP pathways. Cell Signal 23, pp. 1831-1842 [Full Text] [pdf]

Other Prior Publications From G. Sapkota

15. Alarcon, C., Zaromytidou, A. I., Xi, Q., Gao, S., Yu, J., Fujisawa, S., Barlas, A., Miller, A. N., Manova-Todorova, K., Macias, M. J., Sapkota, G., Pan, D. and Massague, J. (2009). Nuclear CDKs drive Smad transcriptional activation and turnover in BMP and TGF-beta pathways. Cell 139, pp. 757-69 [Full Text] [pdf]

14. Gao, S., Alarcon, C., Sapkota, G., Rahman, S., Chen, P. Y., Goerner, N., Macias, M. J., Erdjument-Bromage, H., Tempst, P. and Massague, J. (2009). Ubiquitin ligase Nedd4L targets activated Smad2/3 to limit TGF-beta signaling. Mol Cell 36, pp. 457-68 [Full Text] [pdf]

13. Sapkota, G. P., Cummings, L., Newell, F. S., Armstrong, C., Bain, J., Frodin, M., Grauert, M., Hoffmann, M., Schnapp, G., Steegmaier, M., Cohen, P. and Alessi, D. R. (2007). BI-D1870 is a specific inhibitor of the p90 RSK (ribosomal S6 kinase) isoforms in vitro and in vivo. Biochem J 401, pp. 29-38 [Full Text] [pdf]

12. Sapkota, G., Alarcon, C., Spagnoli, F. M., Brivanlou, A. H. and Massague, J. (2007). Balancing BMP signaling through integrated inputs into the Smad1 linker. Mol Cell 25, pp. 441-54 [Full Text] [pdf]

11. Knockaert, M.†, Sapkota, G.†, Alarcón, C., Massagué, J. and Brivanlou, A.H. (2006) Unique players in the BMP pathway: small C-terminal domain phosphatases dephosphorylate Smad1 to attenuate BMP signaling. [†equal contribution] Proc. Nat. Acad. of Sci. USA. 103, 11940-5 [Full Text] [pdf]

10. Sapkota, G., Knockaert, M., Alarcon, C., Montalvo, E., Brivanlou, A. H. and Massague, J. (2006). Dephosphorylation of the linker regions of Smad1 and Smad2/3 by small C-terminal domain phosphatases has distinct outcomes for bone morphogenetic protein and transforming growth factor-beta pathways. J Biol Chem 281, pp. 40412-9 [Full Text] [pdf]

9. Morgan, C. P., Skippen, A., Segui, B., Ball, A., Allen-Baume, V., Larijani, B., Murray-Rust, J., McDonald, N., Sapkota, G., Morrice, N. and Cockcroft, S. (2004). Phosphorylation of a distinct structural form of phosphatidylinositol transfer protein alpha at Ser166 by protein kinase C disrupts receptor-mediated phospholipase C signaling by inhibiting delivery of phosphatidylinositol to membranes. J Biol Chem 279, pp. 47159-71 [Full Text] [pdf]

8. Baas, A. F., Boudeau, J., Sapkota, G. P., Smit, L., Medema, R., Morrice, N. A., Alessi, D. R. and Clevers, H. C. (2003). Activation of the tumour suppressor kinase LKB1 by the STE20-like pseudokinase STRAD. EMBO J 22, pp. 3062-72 [Full Text] [pdf]

7. Boudeau, J., Sapkota, G. and Alessi, D. R. (2003). LKB1, a protein kinase regulating cell proliferation and polarity. FEBS Lett 546, pp. 159-65 [Full Text] [pdf]

6. Douglas, P., Sapkota, G. P., Morrice, N., Yu, Y., Goodarzi, A. A., Merkle, D., Meek, K., Alessi, D. R. and Lees-Miller, S. P. (2002). Identification of in vitro and in vivo phosphorylation sites in the catalytic subunit of the DNA-dependent protein kinase. Biochem J 368, pp. 243-51 [Full Text] [pdf]

5. Sapkota, G. P., Boudeau, J., Deak, M., Kieloch, A., Morrice, N. and Alessi, D. R. (2002). Identification and characterization of four novel phosphorylation sites (Ser31, Ser325, Thr336 and Thr366) on LKB1/STK11, the protein kinase mutated in Peutz-Jeghers cancer syndrome. Biochem J 362, pp. 481-90 [Full Text] [pdf]

4. Sapkota, G. P., Deak, M., Kieloch, A., Morrice, N., Goodarzi, A. A., Smythe, C., Shiloh, Y., Lees-Miller, S. P. and Alessi, D. R. (2002). Ionizing radiation induces ataxia telangiectasia mutated kinase (ATM)-mediated phosphorylation of LKB1/STK11 at Thr-366. Biochem J 368, pp. 507-16 [Full Text] [pdf]

3. Lee, M. J., Thangada, S., Paik, J. H., Sapkota, G. P., Ancellin, N., Chae, S. S., Wu, M., Morales-Ruiz, M., Sessa, W. C., Alessi, D. R. and Hla, T. (2001). Akt-mediated phosphorylation of the G protein-coupled receptor EDG-1 is required for endothelial cell chemotaxis. Mol Cell 8, pp. 693-704 [Full Text] [pdf]

2. Sapkota, G. P., Kieloch, A., Lizcano, J. M., Lain, S., Arthur, J. S., Williams, M. R., Morrice, N., Deak, M. and Alessi, D. R. (2001). Phosphorylation of the protein kinase mutated in Peutz-Jeghers cancer syndrome, LKB1/STK11, at Ser431 by p90(RSK) and cAMP-dependent protein kinase, but not its farnesylation at Cys(433), is essential for LKB1 to suppress cell vrowth. J Biol Chem 276, pp. 19469-82 [Full Text] [pdf]

1. Godber, B. L., Doel, J. J., Sapkota, G. P., Blake, D. R., Stevens, C. R., Eisenthal, R. and Harrison, R. (2000). Reduction of nitrite to nitric oxide catalyzed by xanthine oxidoreductase. J Biol Chem 275, pp. 7757-63 [Full Text] [pdf]