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ABSTRACT

Submerged oscillating plates are used as heaving

plates to reduce the motion of floating objects, in wave en-

ergy devices to extract the wave energy, and as breakwaters

to attenuate the wave field in shallow water. In this study,

we consider a horizontal, submerged plate in shallow wa-

ter that is allowed to oscillate in the vertical direction due

to the wave loads. The plate is attached to a linear spring

and damper to control the oscillations. The focus of this

study is on the transformation of the wave field by the sub-

merged oscillating plate. To estimate the energy attenua-

tion, wave reflection and transmission coefficients are de-

termined from four wave gauges; two placed upwave and

two placed downwave of the oscillating plate. The fluid

is governed by the nonlinear Level I Green-Naghdi (GN)

equations, coupled with the equations of vertical motion

of the plate to determine its oscillations. Time series of

water surface elevation recorded at gauges upwave and

downwave of the plate, and the wave-induced plate os-

cillations, obtained by the GN model are compared with

available laboratory experiments and other data, and very

good agreement is observed. Wave reflection and trans-

mission coefficients are then determined for a range of in-

volved parameters, including wave condition (wave height

and wave period), initial submergence depth of the plate,

plate length, and the spring-damper system. It is found

that a single submerged oscillating plate can have remark-

able effect on the wave field, and that nonlinearity plays

an important role in this wave-structure interaction prob-

lem. Discussion is provided on how the wave reflection and

transmission vary with the wave condition, plate charac-

teristic, initial submergence depth and spring-damper sys-

tem.
Keywords: Submerged oscillating plates, GN equa-

tions, shallow water waves, wave reflection and transmis-

sion
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INTRODUCTION

Submerged horizontal plates are applied as wave

breakers to mitigate extreme wave loads on nearshore and

structures. Wave scattering characteristics by submerged

fixed plates have been investigated by many researchers,

see e.g. [1], [2], [3], [4], [5] and [6]. Compared to sub-

merged fixed plates, oscillating horizontal plates are more

efficient to attenuate waves, illustrated by [7], [8] and [9].

Submerged horizontal plates are also applied as submerged

wave energy devices. Studies performed by [10] and [11]

showed that wave fields are modified due to the presence

of submerged wave energy converters. Waves deformed by

submerged wave energy devices of submerged horizontal

plates, studied by e.g. [12] and [13], and plate arrays stud-

ied by e.g. [14] and [15], are investigated.

Submerged horizontal plates experience oscillatory

wave forces when waves propagate over the plates. There-

fore the horizontal plate if designed appropriately, can os-

cillate in the vertical direction due to the vertical wave-

induced force. Wave-induced oscillations of the plate are

affected by various parameters, including wave conditions,

initial submergence depths of the plate, and the attached

spring-damper system which is used to control plate’s os-

cillations. At the same time, plate oscillations also alter

wave field, i.e. the wave field is attenuated by oscillating

plates. Hence, this is a fluid-structure-fluid problem, un-

derstanding of which requires information about the fluid

domain, fluid-induced oscillations of the plate, and the ef-

fect of the plate on the fluid domain, and the coupling be-

tween these.

Many studies are conducted to understand transforma-

tion of waves propagating over a submerged fixed plate, see

e.g. [16], [4] and [17]. By comparing surface elevation time

series upwave and downwave of the plate, studies of [18]

illustrated that waves attenuated by an oscillating plate are

different compared to a fixed plate. However, studies of

wave attenuation by a submerged oscillating plate are very

limited.

Wave attenuation by oscillating plates were investi-

gated numerically by [7], [8] and [9]. In work of [7], a

numerical wave tank was established by using the poten-

tial theory, to investigate how waves are attenuated by a

submerged oscillating horizontal plate, and wave reflection

and transmission coefficients are calculated to determine

the wave attenuation. In that study, critical spring stiffness

values were determined to reduce the transmission coeffi-

cients to near zero. Using the smoothed particle hydrody-

namics method, wave attenuation by an oscillating plate for

various initial submergence depths was investigated by [8].

A more recent study by [9] considered wavelength’s effect

on waves attenuated by oscillating plates by use of the com-

putational fluid dynamics method. All the studies, however,

are confined to deep to intermediate wave conditions sub-

ject to very limited wave-plate cases.

Submerged oscillating horizontal plates, used for miti-

gation of large waves and for wave energy production ap-

plications, are placed in shallow waters. Wave transforma-

tion in shallow water by seafloor or by an object requires a

proper understanding of nonlinearity, i.e. the ratio of wave

height to water depth, and dispersion, the ratio of water

depth to wavelength. The nonlinearity plays an important

role when wave propagates over an oscillating submerged

plate due to the sudden change of the water depth upwave

and above the plate. Dispersion, on the other hand, causes

the formation of higher oscillatory components as the wave

passes over the plate towards downwave region. Thus the

effect of nonlinearity and dispersion is essential to the prob-

lem of wave attenuation by submerged oscillating plates.

In this study, we use a nonlinear, dispersive approach

to study attenuation of waves by a submerged, oscillating

horizontal plate, namely the Level I Green-Naghdi (GN)

equations. We follow similar approach recently proposed

by [19] to study this problem. The wave attenuation is in-

vestigated by defining wave reflection and transmission co-

efficients.

The plate is allowed to oscillate only in the vertical di-

rection and its oscillations are controlled by a linear spring

and damper. A wide range of parameters are considered,

including wave condition, plate length, initial submergence

depth of the plate, spring stiffness and damping coefficient,

to study their effect on the wave reflection and transmis-

sion.

The Level I GN theory is introduced first, followed by

the equation of motion of the plates. Results of surface el-

evation time series are first compared with available data.

This is followed by discussion on the wave attenuation by

an oscillating submerged horizontal plate. Then variations

of wave reflection and transmission coefficients with differ-

ent variables are presented and discussed, where contribu-

tions of higher-order harmonics are also investigated. Re-

sults of oscillating plates are then compared to a fixed, hor-

izontal plate. The concluding remarks section is followed

to close the paper.

THE LEVEL I GN THEORY

The wave attenuation by a submerged oscillating plate

is studied here by developing a model based on the Level
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I GN equations. The right-hand side Cartesian coordinate

system is used in the two dimensions, where x1 points to-

wards the wave propagation direction and x2 points up,

against the gravity. The fluid domain is bounded by top

and bottom deformable curves, and is assumed to be in-

compressible and inviscid.

The GN equations satisfy the nonlinear boundary con-

ditions and conservation of mass exactly, and postulate the

conservation of momentum in an integrated form. There is

no limitation for the irrotationality of the flow, i.e., the fluid

flow can be rotational, see [20]. The only assumption made

about the fluid kinematics in the GN equations is the distri-

bution of the vertical velocity over the fluid column, which

determines the levels of the GN equations, see [21]. In

the Level I GN model, the vertical velocity varies linearly

within the water column and thus the horizontal velocity is

invariant in vertical direction. The Level I GN model is best

applied for propagation of long waves in shallow water, see

e.g. [4], [19] and [22]. For higher level GN equations, the

vertical velocity field is prescribed as high-order polynomi-

als, see e.g. [23], [24] and [25]. See [26] for wave refraction

and diffraction by the Level I GN equations.

The Level I GN equations, used in this study, give the

conservations of mass and momentum as (see [27])

η,t +{(h+η −α)u1},x1
= α,t , (1)

u̇1 +gη,x1
+

p̂,x1

ρ
=−1

6
{[2η +α ],x1

α̈

+[4η −α ],x1
η̈ +(h+η −α)[α̈ +2η̈],x1

} ,
(2)

where u1 and u2 are fluid particle velocities in the x1 and x2

directions, respectively, p̂ is the pressure on the top curve of

the fluid domain, α is the deformation of the bottom curve,

η is the surface elevation, ρ is the fluid density and g is the

gravity acceleration. Subscripts after comma indicate dif-

ferentiation with respect to the corresponding variables. θ̇

and θ̈ are the first and second total derivatives of the arbi-

trary variable θ(x1, t), respectively.

Following the approach proposed by [28] for wave

propagation over a fixed, horizontal plate, shown in Fig. 1

in studying the wave interaction with a submerged oscil-

lating plate, the fluid domain is divided into four regions:

(i) RI, x1 < XL, the upwave region from the leading edge

of the plate, (ii) RII, XL ≤ x1 ≤ XT , the region above the

oscillating plate, (iii) RIII, XL ≤ x1 ≤ XT , the region below

the plate, and (iv) RIV, x1 > XT , the downwave region from

the trailing edge of the plate. Appropriate equations and

boundary conditions are then applied to each region.

In Regions RI and RIV, the seafloor is flat and station-

ary, i.e. α(x1, t) = 0. The top boundary of the domain is

free, i.e. η = η(x1, t), and it is exposed to the atmosphere,

i.e. the top pressure is equal to the atmospheric pressure,

taken as p̂(x1, t) = 0. Substituting α =α,t =α,x1
= 0, p̂= 0

and the constant water depth, h = hI , into Eqs. (1) and (2),

the resulting equations for regions RI and RIV are given as

η,t +{(hI +η −α)u1},x1
= 0 , (3)

u̇1 +gη,x1
=−1

3
{2η,x1

η̈ +(hI +η)η̈,x1
} . (4)

The unknowns in RI and RIV are the free surface elevation,

η , and the horizontal velocity, u1.

In Region RII, η = η(x1, t), and p̂(x1, t) = 0, similar

to that in Regions RI and RIV. The bottom curve of Region

RII is the oscillating plate. In this study, we assume that the

plate is flat and rigid and its oscillations are only allowed in

the vertical direction and the water depth in RII is fixed at

h = hII = ζ0. Therefore, the vertical elevation of the plate

in RII is taken as α(x1, t) = α(t). Substituting these condi-

tions into Eqs. (1) and (2) gives the governing equations of

wave propagation over a vertically oscillating floor as

η,t +[(ζ0 +η −α)u1],x1
= α,t , (5)

u̇1 +gη,x1
=−1

3
{(α̈ +2η̈)η,x1

+(ζ0 +η −α)η̈,x1
} . (6)

The unknowns in Region RII are η , u1 and α .

Region RIII consists of a horizontal, oscillating plate

on its top, and a flat, stationary seafloor in the bottom, i.e.

η(x1, t) = η(t) and α(x1, t) = 0 in RIII. The plate is as-

sumed to be thin and thus the water depth in this region

is h = hIII = hI − ζ0. Substituting these conditions into

Eqs. (1) and (2) gives

η,t +(hI −ζ0 +η)u1,x1
= 0 , (7)

u̇1 +
p̂,x1

ρ
= 0 , (8)

where the unknowns in this region are η , u1, and p̂. Sim-

ilar to RII, the number of equations (2) in RIII is one less

than the number of unknowns (3) in RIII. Thus one more

equation is required for Regions RII and RIII.
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We assume that the fluid attaches to the plate without

any gaps at all times, i.e., ηIII(t) = αII(t) = ζ (t), where

subscripts II and III refer to the variables of the regions.

As shown in Fig. 1, ζ is measured from the plate’s initial

submergence depth, ζ0. This relation closes the system of

equations in RIII.

In RIII, substituting η(x1, t) = ζ (t) into Eq. (7) gives

C1(t) =− ζ,t
hI −ζ0 +ζ

, (9)

where C1 is the integration constant and is only a function

of time and is independent of x1. Hence

u1 =C1x1 +C2(t), (10)

where C2 is an integration constant, similar to C1. Equa-

tion (10) illustrates that the horizontal velocity, in RIII,

varies linearly in the x1 direction, between the two ends

of the plate.

The momentum equation in RIII, Eq. (8), can be ex-

panded as

u1,t +u1u1,x1
+

p̂,x1

ρ
= 0 . (11)

Substituting Eq. (10) into Eq. (11) gives

p̂ =−ρ

2

(

C2
1 +C1,t

)

x2
1 −C3(t), (12)

where C3 = C3(t) is the integration constant. That is, the

top pressure in RIII, is distributed in a parabolic form be-

tween the leading and trailing edges of the plate.

Appropriate jump and matching conditions must be en-

forced at the leading and trailing edges of the plate to sat-

isfy physics of the problem, and the continuity of mass and

momentum across the discrete curves, see [29]. See [19]

for more details about the jump and matching conditions,

used in this study.

In the problem of wave interaction with a submerged

oscillating plate, we assume that the plate is rigid and flat.

The vertical motion of the plate is controlled by a linear

spring and damper. Wave-induced oscillations of the plate

are therefore given by Newton’s second law as

ΣF = mζ,tt , (13)

where m is the mass of the plate, and ΣF = Fx2
+Ff +Fk +

FPT is the sum of external loads on the plate, including:

(i) the vertical wave loads, Fx2
(t), (ii) the friction force be-

tween the plate and the rod, Ff (t) = −
(

|ζ,t |
ζ,t

)

µFx1
, where

Fx1
(t) is the horizontal wave force on the plate, (iii) the

spring force, Fk(t)=−k (ζ −ζ0), where k is the spring con-

stant stiffness, and (iv) the damping force, FPT (t) =−Cdζ,t ,
where Cd is the damping coefficient. The plate is initially

located at the equilibrium position (x2 = −ζ0) where the

weight of the plate, buoyancy and the spring forces are bal-

anced.

The entire system of equations are discretized by use

of the finite-difference method. The fluid domain is dis-

cretized into a set of mesh points and all continuous vari-

ables are approximated by the discrete values at the mesh

nodes. Spatial derivatives are approximated by use of the

second-order central difference method. The second-order

modified Euler method is applied for time-marching, and

the Gaussian Elimination method is used to solve the sys-

tems of equations. See [19] and [30] for more details on the

numerical solutions used for this model.

The schematic of the numerical wave tank of wave in-

teraction with a submerged, oscillating horizontal plate is

shown in Fig. 1. A wave maker and a wave absorber are

used on the left and right boundaries of the domain, respec-

tively. The origin of the coordinate system is located on the

still-water level (SWL). Water surface elevation η is mea-

sured form the SWL.

WAVE REFLECTION AND TRANSMISSION COEFFI-

CIENTS

In this study, wave attenuation by oscillating plates is

determined by the wave reflection and transmission coef-

ficients. To calculate the reflection and transmission coef-

ficients, the four-gauge method of [31] is applied. In this

approach gauges GI and GII, are placed upwave from the

leading edge of the plate, and gauges GIII and GIV, are

placed downwave from the trailing edge of the plate, shown

in Fig. 1. This method has been used successfully by [4]

and [32] for problems involving nonlinear wave interaction

with structures by the Level I GN equations.

In this approach, water surface elevation at a given lo-

cation (gauge) is split into a series of linear waves of dif-

ferent amplitude, frequency and phase by use of the Fourier

Transform method. The reflected and transmitted wave am-

plitudes of the nth order harmonic, A
(n)
R and A

(n)
T , are de-

composed from the surface elevations upwave and down-

wave, respectively. Hence, to better assess the nonlinear

4 Copyright © 2023 by ASME



FIGURE 1. Schematic of the numerical wave tank of wave interaction with a fully submerged horizontal oscillating plate. The length

of the plate is LP and the plate is connected to a spring and a damper, whose spring stiffness is k and damping coefficient is Cd ,

respectively. ζ is the instantaneous position of the plate, measured from its initial submergence depth, ζ0.

effects, the first three harmonic amplitudes (n = 1,2 and 3)

are used to calculate wave reflection and transmission co-

efficients. Wave reflection and transmission coefficients,

C
(n)
R , and C

(n)
T , are given as

C
(n)
R =

A
(n)
R

AI

, C
(n)
T =

A
(n)
T

AI

, (14)

where AI is the incident wave amplitude.

COMPARISON OF SURFACE ELEVATION TIME SERIES

In this paper, all variables are dimensionless by use of

ρ , g and h, such that

x′1 =
x1

h
, η ′ =

η

h
, λ ′ =

λ

h
, H ′ =

H

h
,

L′
p =

Lp

h
, ζ ′

0 =
ζ0

h
, t ′ = t

√

g

h
,

m′ =
m

ρh2B
, k′ =

k

ρghB
, C′

d =
Cd

ρ
√

ghBh
,

(15)

where λ is wavelength, H is wave height, and B is the plate

width (into the page). Superscript (′) is removed from all

variables for simplicity in the following sections.

In this section, we compare time series of surface el-

evation by the GN model with the available data, includ-

ing laboratory experiments, and the NS and linear models

of [19]. Figure 2 shows time series of surface elevation,

obtained by the GN, and the available data of laboratory

measurements, and the NS and linear models, recorded at

x1 = XL−2 upwave from the leading edge of the plate, and

x1 = XT +2 downwave from the trailing edge, for two wave

heights, H = 0.067 and H = 0.133. The length and mass of

the plate are LP = 1 and m = 0.016, respectively. See [19]

for more details about the laboratory experiments. The GN

results show very good agreement with the laboratory ex-

periments The NS and linear approaches predict slightly

smaller upwave amplitude than that of the GN model. The

GN and NS models show closer agreement downwave of

the plate.

-0.2

-0.1

0

0.1

0.2

GN EXP NS linear

0 0.5 1 1.5 2
-0.2

-0.1

0

0.1

0.2

0 0.5 1 1.5 2

FIGURE 2. Comparison of time series of surface elevation,

recorded upwave (a, b) and downwave (c, d), for H = 0.067 and

H = 0.133 by the GN and laboratory experiments, and NS and

linear models. T = 10, ζ0 = 0.3, and k = 0.041.

Next, time series of the surface elevation, calculated by

the GN is compared with the NS model of [19], shown in

Fig. 3 for ζ0 = 0.4, and k = 3, Fig. 4 for ζ0 = 0.6, and k = 3,

and Fig. 5 for ζ0 = 0.4, and k = 15. The length and mass

of the plate are LP = 3 and m = 0.35, respectively. The

locations of gauges upwave for GI and GII and downwave

5 Copyright © 2023 by ASME



for GIII and GIV are fixed at x1 = XL −6 and x1 = XL −3,

and x1 = XT +3 and x1 = XT +6, respectively.

-0.2

-0.1

0

0.1

0.2
NS

GN

0 0.5 1 1.5 2
-0.2

-0.1

0

0.1

0.2

0 0.5 1 1.5 2

FIGURE 3. Comparisons of time series of surface elevation by

the NS and GN models for ζ0 = 0.4 and k = 3. T = 25, H = 0.1.

-0.2

-0.1

0

0.1

0.2
NS

GN

0 0.5 1 1.5 2
-0.2

-0.1

0

0.1

0.2

0 0.5 1 1.5 2

FIGURE 4. Comparisons of time series of surface elevation by

the NS and GN models for ζ0 = 0.6 and k = 3. T = 25, H = 0.1.

Shown in Figs. 3, 4 and 5, the GN model predicts the

peak of the surface elevation slightly larger in GI, upwave

from the leading edge. In all other gauges, results of the

GN model are in close agreement with the NS model par-

ticularly at the downwave gauges.

RESULTS AND DISCUSSIONS

In this section, wave reflection and transmission coef-

ficients are calculated and their nonlinear components up

to the third-order harmonics are considered. Results are

obtained by use of the GN model, and presented and dis-

cussed for a range of variables. Wave gauges GI, GII, GIII

-0.2

-0.1

0

0.1

0.2
NS

GN

0 0.5 1 1.5 2
-0.2

-0.1

0

0.1

0.2

0 0.5 1 1.5 2

FIGURE 5. Comparisons of time series of surface elevation by

the NS and GN models for ζ0 = 0.4 and k = 15. T = 25, H = 0.1.

and GIV, used in this section, are placed upwave and down-

wave as shown in Fig. 1, and their locations are determined

depending on the wavelength (λ ) and given in Table 1.

TABLE 1. Wave gauge locations with variation of wavelength.

λ GI GII GIII GIV

6 XL −10 XL −7.7 XT +7.7 XT +10

8 XL −10 XL −7.7 XT +7.7 XT +10

10 XL −10 XL −7.7 XT +7.7 XT +10

12 XL −10 XL −7.7 XT +7.7 XT +10

16 XL −10 XL −5.4 XT +5.4 XT +10

20 XL −10 XL −5.4 XT +5.4 XT +10

24 XL −10 XL −5.4 XT +5.4 XT +10

A wide range of parameters, including wavelength λ ,

wave height, plate length, initial submergence depth of the

plate, spring stiffness and damping coefficients, are con-

sidered to investigate their effect on the wave attenuation,

presented by C
(n)
R and C

(n)
T . Values of these variables are

given in Table 2. The oscillating plate is not changed and

LP = 2 and m = 0.2 are constant and Cd = 0.0, in this sec-

tion, unless otherwise stated.

EFFECT OF WAVELENGTH

Figure 6 shows the variation of C
(n)
R and C

(n)
T with λ/LP

for different initial submergence depths, ζ0 = 0.2, 0.4 and

0.6. Shown in Fig. 6, C
(n)
R and C

(n)
T vary nonlinearly with

λ/LP. The nonlinear components, C
(2)
R and C

(2)
T , and C

(3)
R

6 Copyright © 2023 by ASME



TABLE 2. Values of variables considered in this study.

Variables Values

λ 6, 8, 10, 12, 16, 20, 24

H 0.1, 0.15, 0.2, 0.25, 0.3, 0.35, 0.4

LP 1, 2, 3, 4

ζ0 0.2, 0.3, 0.4, 0.5, 0.6

k 0.3, 0.6, 1, 2, 3, 4, 6, 8, 10

Cd 0.0, 1.0, 5.0

and C
(3)
T , play more remarkable roles for longer waves, at

λ/LP ≥ 5, in most cases.

0

0.2

0.4

0.6

0.8

1

2 4 6 8 10 12
0

0.2

0.4

0.6

0.8

1

2 4 6 8 10 12 2 4 6 8 10 12

FIGURE 6. Variation of (a)-(c) wave reflection and (d)-(f)

transmission coefficients with λ/LP for ζ0 = 0.2, 0.4 and 0.6,

and H = 0.2 and k = 3 are constant.

Shown in Fig. 6, the smallest C
(1)
R value is observed at

the largest wavelength (λ/LP = 12), for larger initial sub-

mergence depths (ζ0 = 0.4 and 0.6). Peaks of C
(2)
R and C

(3)
R

occur at λ/LP = 8 for ζ0 = 0.4 and 0.6. The peak values

of C
(2)
R and C

(3)
R at ζ0 = 0.2 are larger than that at ζ0 = 0.4

and 0.6, which shows that nonlinear components behave

more significantly when the plate oscillates closer to the

free surface, and this is of course not surprising. C
(1)
T is

nearly constant with increasing λ/LP, while C
(2)
T and C

(3)
T

are increasing in most cases.

EFFECT OF WAVE HEIGHT

Figure 7 shows variation of C
(n)
R and C

(n)
T with various

wave heights for Cd = 0.0, 1.0 and 5.0. Shown in Fig. 7,

C
(n)
R and C

(n)
T vary nonlinearly with wave height. Also, the

damping coefficients hardly affect the wave reflection and

transmission coefficients.

0

0.2

0.4

0.6

0.8

1

0 0.1 0.2 0.3 0.4
0

0.2

0.4

0.6

0.8

1

0 0.1 0.2 0.3 0.4 0 0.1 0.2 0.3 0.4

FIGURE 7. Variation of (a)-(c) wave reflection and (d)-(f)

transmission coefficients with wave height H for Cd = 0.0, 1.0

and 5.0, and λ = 12, ζ0 = 0.4 and k = 3 are constant.

Shown in Fig. 7, C
(1)
R and C

(2)
R are smallest at H = 0.4

for all cases. C
(1)
R generally decreases with increasing wave

height while C
(2)
R is oscillatory from H = 0.1 to H = 0.4,

and its maximum value occur at an intermediate wave

height, H = 0.25. The third-order components, C
(3)
R and

C
(3)
T , are not remarkable for all wave heights. Values of C

(1)
T

show less variation with wave height (H), roughly equals

to 0.7 in nearly all cases. C
(2)
T reaches a maximum value

at a relatively larger wave height, H = 0.35, but it becomes

much smaller with an increase in wave height.

EFFECT OF PLATE LENGTH

Figure 8 shows the variation of C
(n)
R and C

(n)
T with vari-

ous plate lengths for λ = 6, λ = 12 and λ = 24. The length

of the plate, as considered here, is between Lp = 1 and

Lp = 4, with an interval of 1. The plate density is invariant

and thus its corresponding mass is between m = 0.1 and

m = 0.4, with an interval of 0.1.

As shown in Fig. 8, we find that wave attenuation be-

haves nonlinearly with plate length. The second-order and

third-order harmonics rarely contribute to wave reflection

and transmission for λ = 6. In this figure, C
(1)
R is reversely

changed with plate length for λ = 6 while C
(1)
R is almost

positively proportional with LP for λ = 12 and λ = 24.

This is mainly because the bottom pressure of the oscillat-

ing plate are distributed in a parabolic form. Wave forces

acting on the plate vary nonlinearly with increasing plate

lengths and thus plate oscillations are not identical even for

7 Copyright © 2023 by ASME
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FIGURE 8. Variation of (a)-(c) wave reflection and (d)-(f)

transmission coefficients with plate length LP for λ = 6, 12 and

24, and H = 0.2 and ζ0 = 0.4 are constant.

the same λ/LP, but a different plate length. Note that plate

lengths are nondimensionalized by the fixed water depth, h.

EFFECT OF SPRING STIFFNESS

Variation of C
(n)
R and C

(n)
T with various spring stiffness

for λ = 6, λ = 12 and λ = 24 are shown in Fig. 9. Similar

to that in Fig. 6, nonlinearity has more significant effect on

longer waves for different spring stiffness. The oscillating

plates with a weaker spring attached to, i.e. k ≤ 1, allow

larger oscillations, and this causes larger wave reflection.

With an increase in spring stiffness, e.g. k ≥ 4, the oscillat-

ing plate attenuates waves nearly the same i.e. the reflection

and transmission coefficients are almost constant.
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FIGURE 9. Variation of (a)-(c) wave reflection and (d)-(f)

transmission coefficients with spring stiffness k for λ = 6, 12

and 24, and H = 0.2 and ζ0 = 0.4 are constant.

OSCILLATING VS FIXED SUBMERGED PLATE

In this section, we investigate differences in wave at-

tenuation by a horizontal submerged oscillating plate and

an equivalent horizontal submerged fixed plate. Identical

wave-plate conditions are used for the fixed and oscillating

submerged plates to allow for a direct comparison of the

results. The only difference is that we use the model dis-

cussed here for the oscillating plate while the model of [22]

is used for the fixed plate, which uses the Level I GN the-

ory.

Figure 10 shows that surface elevation time series

recorded in gauges GI and GII upwave and gauges GIII

and GIV downwave of the oscillating plate are compared

to that of the fixed plate. See [4] for a parametric study of

FIGURE 10. Comparisons of time series of surface elevation

for (a, b) gauegs GI and GII upwave and (c, d) GIII and GIV

downwave of the plate, attenuated by the oscillating plates (OP)

and the fixed plates (FP). λ = 6, H = 0.2, ζ0 = 0.5, and k = 3.

wave interaction with a fixed, submerged horizontal plate.

Shown in Fig. 10, wave amplitudes attenuated by the oscil-

lating plate are slightly larger in gauge GI while the wave

heights attenuated by the oscillating plate are smaller in

other gauges, particularly in gauge GII.

Figure 11 illustrates variation of C
(n)
R and C

(n)
T , of the

oscillating plate and fixed plate with ζ0 for three wave-

lengths λ = 6, 12 and 24. In Fig. 11, we can observe

remarkable differences between the oscillating plate and

fixed plate for shorter wavelength (λ = 6). However, C
(n)
R

and C
(n)
T , calculated by the oscillating plate, are much

closer to the fixed plate for the longer wavelength (λ = 24).

This is because pressure differences above and below the

oscillating plate are not remarkable for long water waves,

and thus the plate oscillations are limited, see [19].

CONCLUDING REMARKS

In this study, we developed a model based on the non-

linear Level I Green-Naghdi equations for the problem of

wave propagation over the submerged oscillating plates.

Attention is confined to wave attenuation by an oscillating

8 Copyright © 2023 by ASME
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FIGURE 11. Variation of (a)-(c) wave reflection and (d)-(f)

transmission coefficients of oscillating plates (OP) fixed plates

(FP) with ζ0 for λ = 6, 12 and 24, and H = 0.2 and k = 3 are

constant.

plate in shallow water. Wave reflection and transmission

coefficients, C
(n)
R and C

(n)
T , are determined to evaluate the

reflected and transmitted waves, respectively. To investi-

gate the contributions of nonlinear components to attenu-

ated waves, the first three harmonics are considered in this

study.

Time series of surface elevation of the model are com-

pared with the laboratory experiments, the NS and linear

models of [19]. Good agreement is observed between the

GN results and experimental data and the other two numer-

ical results.

Variations of C
(n)
R and C

(n)
T with various parameters, in-

cluding wavelength, wave height, plate length, initial sub-

mergence depth of the plate, spring stiffness and damping

coefficients, are investigated as well in this study.

Overall nonlinear harmonics play an important role to

determine wave attenuation by the oscillating plate in shal-

low water. C
(2)
R and C

(2)
T , are remarkable in most cases

while C
(3)
R and C

(3)
T , are less significant in some cases.

In this study, a wide range of parameters are consid-

ered to investigate their effect on wave attenuation by a

submerged oscillating plate. The relation of λ/LP to C
(n)
R

and C
(n)
T is nonlinear. Nonlinear harmonic components play

more remarkable effect on the wave attenuation for longer

waves. Initial submergence depth of the oscillating plate

has more remarkable influence on the first harmonic, C
(1)
R

and C
(1)
T , than that of the higher-order components. The ef-

fect of wave height on C
(n)
T is less than that on C

(n)
R . The

damping coefficients show small effect on C
(n)
R and C

(n)
T

for the cases considered in this study. Plate lengths non-

linearly affect the plate oscillations, and wave reflection

and transmission coefficients are not identical for the same

λ/LP but a different plate length. Springs, attached to the

plate, dominate the performance of wave attenuation where

oscillations of the plate are hardly altered with relatively

stronger springs, i.e., C
(n)
R and C

(n)
T are almost invariant in

these cases.

Wave attenuation by an oscillating plate are calculated

by use of the GN model, and compared with that of a fixed

plate. We find that differences of wave attenuation by the

oscillating and fixed plates are more remarkable for shorter

waves.

Overall, it is observed that an oscillating submerged

plate can have remarkable effect on the wave field. In al-

most all cases considered here, the presence of the oscillat-

ing plate increase the nonlinearity in the flow field.
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