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ABSTRACT1

Diffraction and refraction of nonlinear shallow water2

waves due to uneven bathymetry is studied numerically in3

two and three dimensions. The numerical tank consists of4

a wavemaker at the upwave side of the domain, the sub-5

merged obstacles in the middle of the domain, and a nu-6

merical wave absorber on the downwave of the domain.7

The numerical wavemaker is capable of generating solitary8

and cnoidal waves as solutions of the Green-Naghdi (GN)9

equations. The nonlinear wave refraction and diffraction10

is studied by use of the Level I GN equations. The sys-11

tem of equations are solved numerically in time domain by12

use of a second-order finite difference approach, and in a13

boundary-fitted coordinate system. Various forms of three-14

dimensional bathymetry with large slopes, including flat15

and curved ramps from deep to shallow regions are con-16

sidered. Results include solitary and cnoidal wave surface17

elevation and particle velocities and are compared with the18

existing solutions where possible. Overall very good agree-19

ment is observed. Discussion is provided on the nonlinear-20

ity and dispersion effects on the wave diffraction and re-21

fraction, as well as on the performance of the GN equations22

in solving these problems.23

Keywords: Nonlinear waves, wave refraction and24

diffraction, Green-Naghdi equations, soliton fission25

Introduction26

Wave diffraction and refraction are subjects of great in-27

terest to ocean engineers. The linear wave theory, based on28

the assumption of small amplitude waves, provides solu-29

tions to wave diffraction and refraction in the presence of30

simplified bathymetry and geometries. In shallow waters,31

however, the water depth is much less than the wavelength,32

and the wave amplitude is not necessarily small when com-33

pared to the water depth, and hence the assumption of a34

linear free-surface boundary condition is no longer appli-35

cable. Due to the change in water depth, the long waves36

undergo significant transformation. The original, nearly si-37

nusoidal, wave profile transforms into waves of long and38

flat troughs and isolated and rather sharp crests as they en-39

ter shallow waters. The wave height, speed and direction40

of propagation would also change significantly, and these41

vary with the spatial form of the bathymetry. Such defor-42

mations continue as the water depth decreases, to the limit43

that the wave becomes asymmetric about its crest and even-44

tually leads to instabilities resulting in energy attenuation,45

formation of higher harmonics, and possibly wave break-46

ing. The nonlinear effects resulting in such wave transfor-47

mations cannot be captured by the simplified linear free-48

surface boundary conditions. Climate change and its im-49

pact on frequency and intensity of extreme events, and the50
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sea-level rise, add to the importance of development of ap-51

proaches that can realistically and efficiently analyse the52

wave transformation in coastal areas.53

A common approach to model the nonlinear free-54

surface boundary condition is to assume that certain im-55

portant features of the fluid domain remain unchanged dur-56

ing the wave transformation, and obtain an approximate so-57

lution for the nonlinear boundary conditions. In shallow58

waters, this is achieved by introducing two major scales,59

namely nonlinearity (the ratio of wave height to water60

depth,σ = H/h) and dispersion (the ratio of water depth61

to wavelength,ε = h/λ ). The unknowns (typically the ve-62

locity potential and the free surface) are expanded into a63

perturbation series ordered in terms ofσ andε , the scales64

or perturbation parameters, typically assumed small from65

the outset. It is then possible for one to decide whether66

σ or ε is more critical, and which terms in the expansion67

are to be retained and which terms can be discarded, de-68

termined based on the physical problem, and hence obtain69

an approximate solution to the exact problem. This is the70

“classical perturbation method” in water wave mechanics,71

and is followed by [1–8] and several others afterwards to72

obtain various form of theories for nonlinear wave propaga-73

tion in shallow waters. All methods, following the pertur-74

bation approach, arrive at similar, but not identical, equa-75

tions for propagation of long waves. Models developed for76

wave diffraction and refraction in shallow water based on77

these approaches are discussed in [9–13], among others.78

Green and Naghdi [14] proposed yet another funda-79

mentally different approach in studying nonlinear wave80

transformation in shallow waters based on acontinuum81

modeltypically applied to the theory of plates and shells in82

structural mechanics. The theory is developed based on the83

directed or Cosserat surface, a deformable surface embed-84

ded in a Euclidean three-dimensional space to every point85

of which a deformable vector, called a director, is assigned.86

The Cosserat surface is three-dimensional in character, but87

only depends on two spatial dimensions and time. The di-88

rectors of the Cosserat surface specify how certain proper-89

ties are distributed in the third dimension of thecontinuum90

model. In this theory, the number of the directors defines91

theLevelof the theory.92

In the Level I theory, used in this study, the deformable93

medium is a body of sheet-like fluid consisting of a de-94

formable top (free) surface and a single director attached95

to each point of the surface. This assumption, which is96

the only assumption made about the kinematics of the fluid97

sheet, is equivalent to the linear distribution of the vertical98

velocity along the water column, and hence (due to the con-99

tinuity equation) the horizontal velocity becomes invariant100

over the water depth. This makes the Level I theory mostly101

applicable to propagation of long waves.102

Given that no perturbation is used in the derivation of103

the Green-Naghdi (GN hereafter) equations, there is no re-104

striction on any scaling ratio, e.g., wave amplitude over the105

wave length, or alike in this approach, unlike the classical106

approximations. The only restriction on the thickness of the107

fluid sheet is that it is finite, and nonzero (zero water depth108

leads to a singularity in the equations). There is no need109

to define velocity potential and hence irrotationality of the110

flow is not necessary either. The GN equations are transla-111

tionally (Galilean) invariant (unlike the equations presented112

by [3], among others), satisfy the nonlinear boundary con-113

ditions and the conservation of mass exactly, and postulate114

the integrated momentum equation.115

Further flexibility can be given to the directors when116

deriving the GN equations. This can be achieved by as-117

suming higher order functions (polynomial or exponential)118

for the distribution of the vertical velocity along the water119

column. High-level GN equations are applicable to wave120

propagation in any water depth, see e.g. [15–18]. We note121

that the boundary conditions are satisfied exactly by the GN122

equations of any level. That is, the only difference between123

the GN equations of different levels is on the velocity field.124

In this paper, we investigate the effects of spatial125

changes of the bathymetry on the propagation of nonlin-126

ear waves in shallow water by use of the Level I GN equa-127

tions. The model will allow studying the wave transforma-128

tion while preserving the effect of nonlinearity, dispersion129

and wave reflection (i.e. no need to restrict the wave motion130

to one direction only). Various forms of bottom bathymetry131

with three dimensional (3D) effects on the wave field are132

considered and discussion is provided on the wave trans-133

formation. The theory and the solution are discussed first,134

followed by an introduction to the physical problems under135

consideration. Results of solitary and cnoidal wave diffrac-136

tion and refraction are presented and discussed next and the137

paper is closed by concluding remarks.138

The Green-Naghdi Equations139

For an incompressible and inviscid fluid, Green and140

Naghdi [19] showed that it is possible to derive the gov-141

erning equations in a systematic way from the exact three-142

dimensional equations of an incompressible, inviscid fluid143

(Euler’s equations) by use of a single approximation for144

the (three-dimensional) velocity field. The assumption is145

equivalent to the Level I assumption in the direct approach,146

that is the vertical component of the velocity field is a lin-147
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ear function of the vertical coordinate (in a Eulerian sys-148

tem) and that the horizontal components are invariable in149

the vertical direction. Such a velocity field allows for rota-150

tional flow on the horizontal surface, and the vorticity com-151

ponent on the horizontal plane does not need to be zero152

even though the shear flow on the vertical surfaces are ig-153

nored.154

We use a Cartesian coordinate system(x1,x2,x3), with
the associated orthonormal base vectorsei , such that the
x1 − x3 plane is the still-water level (SWL) ande2 is ver-
tically upward. The mass densityρ of the fluid and the
gravitational accelerationg, in the−e2 direction, are con-
stant. Subscripts after comma designate partial differentia-
tion with respect to time or the corresponding spatial direc-
tion. Ertekin [20] provided a familiar form of the equations
given by the mass and momentum conservation as

η,t +{(h+η −α)u j}, j = α,t , j = 1,3, (1)

u̇i +gη,i +
p̂,i
ρ

=−1
6
{[2η +α ],iα̈ +[4η −α ],i η̈

+(h+η −α)[α̈ +2η̈ ],i} , j = 1,3, (2)

where V = u1e1 + u2e2 + u3e3 is the velocity vector,155

η(x1,x3, t) is the free surface elevation measured from the156

SWL,α(x1,x3, t) describes the seafloor surface, andt is the157

time variable. The scalar function ˆp(x1,x3, t) is the fluid158

pressure on the top surface, andh(x1,x3) is the water depth159

(measured from the SWL to the stationary seafloor). The160

superposed dot denotes the material derivative, and a dou-161

ble superposed dot is defined as the second material time162

derivative. With no loss in generality, in this study we con-163

fine our attention to cases where (i) the seafloor is station-164

ary, i.e.α(x1,x3, t) = α(x1,x3), and (ii) p̂(x1,x3, t) = 0, i.e.165

pressure is atmospheric on the top surface. Breaking waves166

are excluded from this study.167

Numerical Solution and Setup168

A 3D numerical wave channel is created, where a169

wavemaker is place on one end and a wave absorber is170

located at the opposite end. The numerical wavemaker171

generates solitary and cnoidal waves of the GN equations,172

see [20] and [21]. The open-boundary uses Orlanski’s con-173

dition applied to both surface elevation and horizontal ve-174

locity to reduce reflections back into the wave tank.175

The exact nonlinear free surface (kinematic and dy-176

namic) and the seafloor boundary conditions are embedded177

within the GN equations (1) to (2). On the lateral sides of178

the wave tank, the channel walls, two types of boundary179

conditions are enforced, namely the wall condition for no180

flux normal to the walls, and the radiation condition based181

on the assumption that the velocity and surface elevation182

vary smoothly near the lateral boundary to minimize the183

effect of the lateral walls on the flow field (when the wave184

refraction and flow in thex3 direction are remarkable near185

the wall), see [22] for more details.186

The system of equations are solved by use of a central187

difference method, second order in space, see [20] for more188

details. A numerical grid generation is applied to facilitate189

the use of finite-difference method to solve the equations in190

the presence of irregular boundaries. This allows the inclu-191

sion of irregular boundaries conveniently by mapping the192

physical domain into a rectangular computational domain.193

An elliptical mesh generation technique is used, in which194

a one-to-one mapping is developed between the physical195

and the computational planes by use of the Laplace equa-196

tion. A uniform computational grid system with unit in-197

terval spacings is used in the solution of all the governing198

equations, which significantly simplifies the use of finite-199

difference method, see [23] for more details.200

All problems considered here are symmetric with re-201

spect to thex1 − x2 plane passing through the center line202

of the domain, and hence only one half of the domain is203

analyzed by use of the symmetry condition. To avoid nu-204

merical instabilities, the bathymetry of the cases considered205

here are slightly smoothed by taking a weighted average of206

the depth values of the neighboring points.207

Time marching of the solution is achieved iteratively by208

use of the successive over-relaxation method, see [24] for209

more details. Hereafter, all variables are given in dimen-210

sionless form by use ofρ , g and h (water depth upwave211

of the ramp) as a dimensionally independent set. A spatial212

grid with ∆x1 = ∆x3 = 0.4 is used for domain discretiza-213

tion. A time step of∆t = 0.4 is used for all calculations,214

see [22] and [25] for discussion on the gride convergency.215

The GN model, discussed in this study, has been ver-216

ified and validated previously for wave propagation over217

various forms of uneven bathymetry in two dimensions218

by [21, 26, 27] for solitary and cnoidal waves propagation219

over submerged ramps, bumps and mounts. Results of the220

equations have also been extensively compared with labo-221

ratory experiments for wave deformation due fixed or float-222

ing bodies, see e.g. [23, 24, 28–30]. In this paper, we will223

build upon the previous investigations of [22], and confine224

our attention to the results of the GN model for nonlinear225

wave diffraction and refraction.226
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Results and Discussion227

We consider propagation of nonlinear waves of solitary228

and cnoidal types over a bottom shelf. The shelf consists229

of a 1:20 flat, linear ramp (FLR hereafter), gradually con-230

necting the constant water depth to shallow region, whose231

dimensions are shown in Fig. 1. To better investigate232

the 3D effects and wave refraction, we extend the FLR by233

adding an additional component across the shelf and con-234

sider another four curved-bottom ramps, namely (i) narrow235

concave ramp (NCR), (ii) wide concave ramp (WCR), (iii)236

narrow convex ramp (NXR), and (iv) wide convex ramp237

(WXR), whose dimensions are shown in Fig. 1. The 3D238

ramp profile, varying both inx1 andx3 directions, is given239

by f (x3) = ARcos2 (2πx3/BR) for x3 ≤ BR, whereAR and240

BR are the curve amplitude and width of the 3D curves of241

the ramp, respectively, whose values are given in Table 1242

(also shown in Fig. 1). These are similar to those consid-243

ered by [25], who used Boussinesq-class equations to study244

the wave refraction and diffraction.245

TABLE 1. Amplitude and width of the ramp curves

Case FLR NCR WCR NXR WXR

AR 0 10 10 -10 -10

BR 0 12 24 12 24

In all cases, the domain length is 120, extended from246

x1 = −30 to x1 = 90, and its width is 32, fromx3 = 16 to247

x3 = −16. x3 = 0, the center line of the bathymetry, is the248

line of symmetry in all cases. The ramp starts fromx1 = 6,249

and the water depth on the shelf (downwave of the ramp) is250

alwaysh1 = 0.5.251

Solitary Waves252

The solitary wave amplitude is kept constant in all253

cases considered in this study atA = 0.12. The 3D sur-254

face elevation of the waves propagating over the five ramps255

are shown in Fig. 2. The color bar remains unchanged in all256

cases for better comparisons. The wave profile undergoes257

significant deformation as it propagates over the shelves.258

The nonlinearity parameter,σ , is physically mani-259

fested as the tendency of the wave front to steepen during260

the propagation, while the dispersion parameter,ε , gauges261

the tendency of a single wave to disperse into a train of262

oscillatory waves. The relative magnitude of these two pa-263

rameters, the Ursell numberUr = σ/ε2, is often used to264

determine which phenomenon (nonlinearity or dispersion)265

dominates during the wave transformation, see [31]. The266

wave is stable when the two parameters are in balance, i.e.267

Ur = O(1). The change in the bathymetry breaks this bal-268

32 0.5

10

Flat
Linear 
Ramp

10

12

10

0.5

1010

Narrow 
Concave 
Ramp

10

24

4

0.5

104

Wide 
Concave 
Ramp

10

12

10

0.5

10

10

Narrow 
Convex 
Ramp

10

24

4

0.5

10

4

Wide 
Convex 
Ramp

FIGURE 1. Schematic of the five deep-to-shallow ramps con-
sidered in this study, and their dimensions. Not to scale.
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FIGURE 2. Snapshots of the surface elevation of a solitary
wave propagating over (a) NCR, (b) WCR, (c) NXR, (d) WXR,
and (e) FLR. The ramp starts fromx1 = 6. The snapshots are
taken at four different times, but plotted on the same figure.

ance locally, and hence the wave undergoes deformation to269

achieve a new stable form.270

As the wave approaches the ramp, part of the mass271

and energy is reflected back, and the wave deformation be-272

gins. Water depth reduces as the wave propagates over the273

ramp and onto the shelf, resulting in increasing nonlinear-274

ity. Hence, in all cases, the amplitude of the main soliton275

is larger immediately downwave of the shelf. As the wave276

propagates away from the shelf, dispersion comes to play277

and results in formation of second and third solitons, which278

separate from the main wave as it propagates over the con-279

stant water depth above the shelf. The form of the 3D shelf,280

of course, plays an important role on the exact form and281

amplitude of the solitons.282

Comparing results of the FLR case to the other four283

clearly shows the 3D effects, causing asymmetry of the284

wave profile from the center line (x3 = 0) and the wall of285

the domain (x3 = 16), best seen in snapshots taken at times286

t = 30 and 60 in Fig. 2 (a) - (d). In the concave ramp cases,287

NCR and WCR, the amplitude of the main soliton becomes288

larger along the wall, while for the convex cases, NXR and289

WXR, the main soliton’s peak is amplified along the cen-290

terline of the domain. This is in line with the classic wave291

refraction theories (see e.g. [32]), where the lines parallel292

to the wave crest, obliquely approaching a ramp, turn di-293

rection such that the angle between the crest line and the294

depth contours become smaller, i.e. Snell’s law. Similarly,295

in the 3D ramps, the ray lines (lines perpendicular to the296

3D wave crest pointing to the wave propagation direction)297

turn towards shallower water as the wave passes over the298

curved ramp.299

The cases with wider curved ramps, WCR and WXR,300

cause larger differences of the wave amplitude across the301

channels when compared to the cases with narrower ramps,302

NCR and NXR. Downwave from the shelf and over the303

constant water depth, the balance between nonlinearity and304

dispersion is achieved once again and the wave profile be-305

comes nearly identical across the channel, best seen in306

snapshots taken at timet = 60 in Fig. 2 (a) -(d).307

To better assess the effect of the uneven seafloor on the308

wave field, in Fig. 3, we look at the snapshots of the verti-309

cal velocity at the free surface taken at four different times.310

When compared to the flat linear ramp (FLR), the distribu-311

tion of the vertical velocity is asymmetric from the center312

line of the channel to the channel walls. As the wave de-313

forms, in the concave cases, NCR and WCR, areas of neg-314

ative vertical velocity is observed at the back of the wave315

(best seen at timet = 60 in Fig. 3 (a) and (b)), which have316

larger magnitudes in the wider ramp case, WCR. The op-317
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FIGURE 3. Snapshots of the vertical velocity of a solitary
wave propagating over (a) NCR, (b) WCR, (c) NXR, (d) WXR,
and (e) FLR. The snapshots are taken at four different times, but
plotted on the same figure. The color bars are kept the same in
all figures to allow for better comparisons between cases.

posite is observed in these regions for the convex cases, i.e.318

larger positive vertical velocities, which are more remark-319

able in the wider ramp case, WXR. The horizontal velocity320

(not shown here due to page limits) is always larger at areas321

with larger surface elevation.322

To better investigate the change in the wave profile323

across the width of the channels (due to the curved ramps),324

in Figs. 4 to 8, we look at snapshots of surface elevation325

across the center line and the wall of the channel. We keep326

the height of the vertical axis the same in all these figures327

for better comparisons. In all cases, as mentioned earlier,328

the front side of the wave steepens and the wave amplitude329

grows as the wave approaches the ramp. Downwave over330

the shelf, soliton fission is observed, where two or three331

solitons are formed and as the wave propagates, separate332

from the leading soliton due to differences in their propa-333

gation velocity (note that the soliton speed isU =
√

1+A,334

always critical or supercritical).335

When compared to the FLR case, in all curved cases,336

there is a remarkable difference between the wave profile at337

the center of the domain versus that at the channel wall, best338

seen at timest = 40 and 60 in Figs. 4 to 7, which, is due339

to the wave refraction by the different curved bathymetry.340

In the concave cases, NCR and WCR, the wave amplitude341

is larger near the wall, and the opposite is observed for the342

convex cases, NXR and WXR. At the later stages of soliton343

propagation over the shelf,t = 80 in Figs. 4 to 7, the ampli-344

tude of the main solitons are nearly identical at the center345

and wall cut of the channel. The amplitude of the second346

and third solitons, however, are different at the center and347

wall cut of the channel even att = 80; in the concave cases,348

the amplitude of the second soliton is larger at the center349

line, while the opposite is observed in the convex cases.350

Similarly, in the concave cases, at timet = 80, the second351

soliton is separated from the main soliton at the center line352

of the domain while it is still part of the main soliton at the353

channel wall. In the convex cases, the opposite is observed,354

i.e. the second soliton at the wall is separated, but not at the355

center line.356

Shown in Figs. 4 to 8, results of the GN equations357

are in very good agreement with those obtained by [25]358

by use of the Boussinesq equations. Results of the soli-359

tary wave propagating over FLR, shown in Fig. 8, are360

also in good agreement with the laboratory measurements361

of Madsen and Mei [5] (who report 1.66 and 0.75 for the362

amplitude of the first and second solitons, respectively)363

and calculations of Johnson [33] (who reports 1.71 and364

0.66 for the amplitudes of the first and second solitons, re-365

spectively), although the peak of the soliton calculated by366
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FIGURE 4. Snapshots of surface elevation of solitary wave
propagating over the narrow concave ramp (NCR) at the cen-
ter line (a-e) and wall cut (f-j), calculated by the GN model and
compared with the Boussinesq-class results of [25].

the GN equations are slightly smaller than those reported367

by [33], mainly because wave reflection (as large as about368

15% in this case, see [27]) is neglected in the KdV models.369

Cnoidal Wave370

In this section, results of the GN model for cnoidal371

wave propagation over the five bottom ramps are presented.372

The wave height and wavelength areH = 0.12 andλ = 20,373

respectively. All other variables and numerical setup are374

identical to those discussed in the previous sections. Snap-375

shots of the 3D surface elevation of cnoidal waves prop-376

agating over these ramps obtained by the GN model are377

shown in Fig. 9. The cnoidal waves deform significantly as378

they propagate over the ramp into the shelf, and this varies379
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FIGURE 5. Snapshots of surface elevation of solitary wave
propagating over the wide concave ramp (WCR) at the center
line (a-e) and wall cut (f-j), calculated by the GN model and com-
pared with the Boussinesq-class results of [25].

in different cases. Qualitatively, similar behaviour in wave380

diffraction and refraction is observed as those of a solitary381

wave, with the difference that the incoming waves undergo382

further deformation due to the interaction with the reflected383

waves, and with waves of smaller amplitudes.384

Concluding Remarks385

A 3D model for nonlinear wave propagation in shallow386

water and over uneven bathymetry is developed based on387

the Level I GN equations. A 3D numerical wave tank is388

created and a flat, linear ramp is considered in this study.389

To further investigate the 3D effects on the wave refraction,390

four extensions are added systematically to the flat shelf,391

creating concave and convex ramps of different widths. The392
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FIGURE 6. Snapshots of surface elevation of solitary wave
propagating over the narrow convex ramp (NXR) at the center
line (a-e) and wall cut (f-j), calculated by the GN model and com-
pared with the Boussinesq-class results of [25].

model is used to study solitary and cnoidal wave diffraction393

and refraction due to various forms of bathymetry.394

Through the results obtained from the GN model, it is395

observed that the waves undergo significant deformation as396

they propagate over the ramps. Common across all cases,397

the wave amplitude initially increases due to the stronger398

nonlinearity. The growth of the wave amplitude across the399

channel width varies depending on the shape of the ramp,400

such that for concave cases, the wave amplitude is larger at401

the channel walls, while the wave in the center line is larger402

for the convex cases. Downwave of the ramp, soliton fis-403

sion is observed, where second (and sometimes third) soli-404

tons are formed. Again the shape of the bathymetry has a405

significant effect on the magnitude of the second (and third)406

0
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0
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(d) Center line, t=60 (i) Wall cut, t=60
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0
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FIGURE 7. Snapshots of surface elevation of solitary wave
propagating over the wide convex ramp (WXR) at the center line
(a-e) and wall cut (f-j), calculated by the GN model and com-
pared with the Boussinesq-class results of [25].

solitons.407

It is concluded that the GN equations, capturing non-408

linearity, dispersion and wave reflection, which also satisfy409

the boundary conditions exactly, are a remarkable alter-410

native to perturbation-based methods, and a very efficient411

alternative to any computational fluid dynamics model to412

study wave transformation in coastal areas.413
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