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ABSTRACT 26 " Introduction
Diffraction and refraction of nonlinear shallow water,, Wave diffraction and refraction are subjects of great in-

waves due to uneven bathymetry is studied numerically,dn terest to ocean engineers. The linear wave theory, based on
two and three dimensions. The numerical tank consists,of the assumption of small amplitude waves, provides solu-
a wavemaker at the upwave side of the domain, the syb-tions to wave diffraction and refraction in the presence of
merged obstacles in the middle of the domain, and a nu- simplified bathymetry and geometries. In shallow waters,
merical wave absorber on the downwave of the domaip. however, the water depth is much less than the wavelength,
The numerical wavemaker is capable of generating solitaty and the wave amplitude is not necessarily small when com-
and cnoidal waves as solutions of the Green-Naghdi (GN) pared to the water depth, and hence the assumption of a
equations. The nonlinear wave refraction and diffractiog linear free-surface boundary condition is no longer appli-
is studied by use of the Level | GN equations. The sys- cable. Due to the change in water depth, the long waves
tem of equations are solved numerically in time domain By undergo significant transformation. The original, nearly si-
use of a second-order finite difference approach, and ing nusoidal, wave profile transforms into waves of long and
boundary-fitted coordinate system. Various forms of threg- flat troughs and isolated and rather sharp crests as they en-
dimensional bathymetry with large slopes, including flat ter shallow waters. The wave height, speed and direction
and curved ramps from deep to shallow regions are con- of propagation would also change significantly, and these
sidered. Results include solitary and cnoidal wave surfage vary with the spatial form of the bathymetry. Such defor-
elevation and particle velocities and are compared with the mations continue as the water depth decreases, to the limit
existing solutions where possible. Overall very good agreg- that the wave becomes asymmetric about its crest and even-
ment is observed. Discussion is provided on the nonlinegy- tually leads to instabilities resulting in energy attenuation,
ity and dispersion effects on the wave diffraction and rg- formation of higher harmonics, and possibly wave break-
fraction, as well as on the performance of the GN equatiops ing. The nonlinear effects resulting in such wave transfor-

in solving these problems. s mations cannot be captured by the simplified linear free-
Keywords. Nonlinear waves, wave refraction and surface boundary conditions. Climate change and its im-
diffraction, Green-Naghdi equations, soliton fission so pact on frequency and intensity of extreme events, and the
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sea-level rise, add to the importance of development ofap- tinuity equation) the horizontal velocity becomes invariant
proaches that can realistically and efficiently analyse the over the water depth. This makes the Level | theory mostly
wave transformation in coastal areas. applicable to propagation of long waves.

A common approach to model the nonlinear frees Given that no perturbation is used in the derivation of
surface boundary condition is to assume that certain im- the Green-Naghdi (GN hereafter) equations, there is no re-
portant features of the fluid domain remain unchanged dur- striction on any scaling ratio, e.g., wave amplitude over the
ing the wave transformation, and obtain an approximate:so- wave length, or alike in this approach, unlike the classical
lution for the nonlinear boundary conditions. In shallow approximations. The only restriction on the thickness of the
waters, this is achieved by introducing two major scales, fluid sheet is that it is finite, and nonzero (zero water depth
namely nonlinearity (the ratio of wave height to wates leads to a singularity in the equations). There is no need
depth,o = H/h) and dispersion (the ratio of water deptl to define velocity potential and hence irrotationality of the
to wavelengthg = h/A). The unknowns (typically the ve:11 flow is not necessary either. The GN equations are transla-
locity potential and the free surface) are expanded intaza tionally (Galilean) invariant (unlike the equations presented
perturbation series ordered in termsamfinde, the scalesus by [3], among others), satisfy the nonlinear boundary con-
or perturbation parameters, typically assumed small fram ditions and the conservation of mass exactly, and postulate
the outset. It is then possible for one to decide whether the integrated momentum equation.

o or € is more critical, and which terms in the expansiaef Further flexibility can be given to the directors when
are to be retained and which terms can be discarded,.de-deriving the GN equations. This can be achieved by as-
termined based on the physical problem, and hence ohtainsuming higher order functions (polynomial or exponential)
an approximate solution to the exact problem. This is the for the distribution of the vertical velocity along the water

102

“classical perturbation method” in water wave mechanics,
and is followed by [1-8] and several others afterwardsi4o
obtain various form of theories for nonlinear wave propaga-
tion in shallow waters. All methods, following the pertuszs
bation approach, arrive at similar, but not identical, equa-
tions for propagation of long waves. Models developed fgr
wave diffraction and refraction in shallow water based ggn
these approaches are discussed in [9-13], among others.

Green and Naghdi [14] proposed yet another funda-
mentally different approach in studying nonlinear wause
transformation in shallow waters based orcantinuum 130
modeltypically applied to the theory of plates and shellsin

column. High-level GN equations are applicable to wave
propagation in any water depth, see e.g. [15-18]. We note
that the boundary conditions are satisfied exactly by the GN
equations of any level. That is, the only difference between
the GN equations of different levels is on the velocity field.
In this paper, we investigate the effects of spatial
changes of the bathymetry on the propagation of nonlin-
ear waves in shallow water by use of the Level | GN equa-
tions. The model will allow studying the wave transforma-
tion while preserving the effect of nonlinearity, dispersion
and wave reflection (i.e. no need to restrict the wave motion
to one direction only). Various forms of bottom bathymetry

structural mechanics. The theory is developed based onsthewith three dimensional (3D) effects on the wave field are
directed or Cosserat surface, a deformable surface embed<considered and discussion is provided on the wave trans-
ded in a Euclidean three-dimensional space to every pgint formation. The theory and the solution are discussed first,
of which a deformable vector, called a director, is assignegl. followed by an introduction to the physical problems under
The Cosserat surface is three-dimensional in character;butconsideration. Results of solitary and cnoidal wave diffrac-
only depends on two spatial dimensions and time. Theudi- tion and refraction are presented and discussed next and the
rectors of the Cosserat surface specify how certain proper- paper is closed by concluding remarks.

ties are distributed in the third dimension of tentinuum

model In this theory, the number of the directors defings The Green-Naghdi Equations

the Levelof the theory. 140 For an incompressible and inviscid fluid, Green and
In the Level | theory, used in this study, the deformahie Naghdi [19] showed that it is possible to derive the gov-
medium is a body of sheet-like fluid consisting of a dg> erning equations in a systematic way from the exact three-
formable top (free) surface and a single director attached dimensional equations of an incompressible, inviscid fluid
to each point of the surface. This assumption, whichuis (Euler's equations) by use of a single approximation for
the only assumption made about the kinematics of the fluid the (three-dimensional) velocity field. The assumption is
sheet, is equivalent to the linear distribution of the vertical equivalent to the Level | assumption in the direct approach,
velocity along the water column, and hence (due to the cen- that is the vertical component of the velocity field is a lin-
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ear function of the vertical coordinate (in a Eulerian sys flux normal to the walls, and the radiation condition based
tem) and that the horizontal components are invariablesn on the assumption that the velocity and surface elevation
the vertical direction. Such a velocity field allows for rotas vary smoothly near the lateral boundary to minimize the
tional flow on the horizontal surface, and the vorticity conas effect of the lateral walls on the flow field (when the wave
ponent on the horizontal plane does not need to be zerorefraction and flow in theg direction are remarkable near
even though the shear flow on the vertical surfaces aresg- the wall), see [22] for more details.
nored.

We use a Cartesian coordinate systemxy, x3), with 4,
the associated orthonormal base vec®rssuch that the g
X1 — X3 plane is the still-water level (SWL) ang is ver- 14

The system of equations are solved by use of a central
difference method, second order in space, see [20] for more
details. A numerical grid generation is applied to facilitate
tically upward. The mass densify of the fluid and the.q the use of finite-difference method to solve the equations in
gravitational acceleratiog, in the —e; direction, are con-i,; the presence of irregular boundaries. This allows the inclu-
stant. Subscripts after comma designate partial differentia- sion of irregular boundaries conveniently by mapping the
tion with respect to time or the corresponding spatial direg- physical domain into a rectangular computational domain.
tion. Ertekin [20] provided a familiar form of the equations, An elliptical mesh generation technique is used, in which
given by the mass and momentum conservation as a one-to-one mapping is developed between the physical
and the computational planes by use of the Laplace equa-

195

196

ni+{th+n-a)uj};=as,” j=13, (1) v tion. A uniform computational grid system with unit in-

_ Bi 1 - . 198 terval spacings is used in the solution of all the governing
Gitgni+- = —gll2n+alia+[an —alif e equations, which significantly simplifies the use of finite-
F(h4n—a)G+28]i}, j=13; @ 200 difference method, see [23] for more details.

01 All problems considered here are symmetric with re-

where V = Uiey + € + Uses is the velocity vector,. 2 spect to theg — x, plane passing through the center line
N(x1,%,1) Is the free surface elevation measured from the ¢y, domain, and hence only one half of the domain is

SWL, a(x,s,t) describes the seafloor surface, arglthe analyzed by use of the symmetry condition. To avoid nu-

. . . ~ . | 204
time varlablet.h Tthe sce:(lar func;op(xl,_xi,r;[) 'S tthe :;Iu'c:hzos merical instabilities, the bathymetry of the cases considered
pressure on the top surface, 1’X3). IS the-waler depin '~ here are slightly smoothed by taking a weighted average of
(measured from the SWL to the stationary seafloor). The . . .

: T 207 the depth values of the neighboring points.
superposed dot denotes the material derivative, and a dou-
ble superposed dot is defined as the second material time

derivative. With no loss in generality, in this study we cofi-
209

Time marching of the solution is achieved iteratively by

fine our attention to cases where (i) the seafloor is station-
ary, i.e.a(xq,xa,t) = a(xq,x3), and (i) p(x, x3,t) = 0, i.e. **°

pressure is atmospheric on the top surface. Breaking wéles

212

use of the successive over-relaxation method, see [24] for
more details.. Hereafter, all variables are given in dimen-
sionless form by use gb, g andh (water depth upwave

of the ramp) as a dimensionally independent set. A spatial

are excluded from this study.
213

grid with Ax; = Axz = 0.4 is used for domain discretiza-
Numerical Solution and Setup tion. A time step ofAt = 0.4 is used for all calculations,

A 3D numerical wave channel is created, whereia see [22] and [25] for discussion on the gride convergency.
wavemaker is place on one end and a wave absorber is
located at the opposite end. The numerical wavemaker The GN model, discussed in this study, has been ver-
generates solitary and cnoidal waves of the GN equatiens, ified and validated previously for wave propagation over
see [20] and [21]. The open-boundary uses Orlanski’'s ca#- various forms of uneven bathymetry in two dimensions
dition applied to both surface elevation and horizontal v&- by [21, 26, 27] for solitary and cnoidal waves propagation
locity to reduce reflections back into the wave tank. 220 over submerged ramps, bumps and mounts. Results of the

The exact nonlinear free surface (kinematic and @y- equations have also been extensively compared with labo-
namic) and the seafloor boundary conditions are embedeledratory experiments for wave deformation due fixed or float-
within the GN equations (1) to (2). On the lateral sides:@f ing bodies, see e.g. [23, 24,28-30]. In this paper, we will
the wave tank, the channel walls, two types of bounda#y build upon the previous investigations of [22], and confine
conditions are enforced, namely the wall condition for fe our attention to the results of the GN model for nonlinear

wave diffraction and refraction.
Copyright (© 2022 by ASME
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Results and Discussion

We monsider propagation of nonlinear waves of solitary
and cnoidal types over a bottom shelf. The shelf consists
of a 1:20 flat, linear ramp (FLR hereafter), gradually con-
necting the constant water depth to shallow region, whose
dimensions are shown in Fig. 1. To better investigate
the 3D effects and wave refraction, we extend the FLR by
adding an additional component across the shelf and con-
sider another four curved-bottom ramps, namely (i) narrow
concave ramp (NCR), (ii) wide concave ramp (WCR), (iii)
narrow convex ramp (NXR), and (iv) wide convex ramp
(WXR), whose dimensions are shown in Fig. 1. The 3D
ramp profile, varying both ix; andxz directions, is given
by f(x3) = Arcos (271x3/BR) for x3 < Bg, whereAr and
Br are the curve amplitude and-width of the 3D curves of
the ramp, respectively, whose values are given in Table 1
(also shown in Fig. 1). These are similar to those consid-
ered by [25], who used Boussinesqg-class equations to study
the wave refraction and diffraction.

TABLE 1. Amplitude and width of the ramp curves
Case| FLR NCR WCR NXR WXR

Ar 0 10 10 -10 -10
Br 0 12 24 12 24

In all cases, the domain length is 120, extended from
X1 = —30to x; = 90, and its width is 32, fromxz = 16 to
X3 = —16. x3 = 0, the center line of the bathymetry, is the
line of symmetry in all cases. The ramp starts froim= 6,
and the water depth on the shelf (downwave of the ramp) is
alwaysh; = 0.5.

Solitary Waves

The solitary wave amplitude is kept constant in all
cases considered in this studyft= 0.12. The 3D sur-
face elevation of the waves propagating over the five ramps
are shown in Fig. 2. The color bar remains unchanged in all
cases for better comparisons. The wave profile undergoes
significant deformation as it propagates over the shelves.

The nonlinearity parameterg, is physically mani-
fested as the tendency of the wave front to steepen during
the propagation, while the dispersion parametggauges
the tendency of a single wave to disperse into a train of
oscillatory waves. The relative magnitude of these two pa-
rameters, the Ursell numbérr = g /€2, is often used to
determine which phenomenon (nonlinearity or dispersion)
dominates during the wave transformation, see [31]. The
wave is stable when the two parameters are in balance, i.e.
Ur = 0(1). The change in the bathymetry breaks this bal-

4

Flat
Linear
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Narrow

Wide
Concave
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Convex
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Ao
':,\t“.“‘,‘\""'\‘,'

FIGURE 1. Sdematic of the five deep-to-shallow ramps con-
sidered in this study, and their dimensions. Not to scale.
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FIGURE 2. Srepshots of the surface elevation of a solitags
wave propagating over (a) NCR, (b) WCR, (c) NXR, (d) WXRus
and (e) FLR. The ramp starts frora = 6. The snapshots are:;

taken at four different times, but plotted on the same figure.
5

ance locally, and hence the wave undergoes deformation to
achieve a new stable form.

As the wave approaches the ramp, part of the mass
and energy is reflected back, and the wave deformation be-
gins. Water depth reduces as the wave propagates over the
ramp and onto the shelf, resulting in increasing nonlinear-
ity. Hence, in all cases, the amplitude of the main soliton
is larger immediately downwave of the shelf. As the wave
propagates away from the shelf, dispersion comes to play
and results in formation of second and third solitons, which
separate from the main wave as it propagates over the con-
stant water depth above the shelf. The form of the 3D shelf,
of course, plays an important role on the exact form and
amplitude of the solitons.

Comparing results of the FLR case to the other four
clearly shows the 3D effects, causing asymmetry of the
wave profile from the center linex{ = 0) and the wall of
the domain Xz = 16), best seen in snapshots taken at times
t=30and 60 in Fig. 2 (a) - (d). In the concave ramp cases,
NCR and WCR, the amplitude of the main soliton becomes
larger along the wall, while for the convex cases, NXR and
WXR, the main soliton’s peak is amplified along the cen-
terline of the domain. This is in line with the classic wave
refraction theories (see e.g. [32]), where the lines parallel
to the wave crest, obliquely approaching a ramp, turn di-
rection such that the angle between the crest line and the
depth-contours become smaller, i.e. Snell's law. Similarly,
in the 3D-ramps, the ray lines (lines perpendicular to the
3D wave crest pointing to the wave propagation direction)
turn towards shallower water as the wave passes over the
curved ramp.

The cases with wider curved ramps, WCR and WXR,
cause larger differences of the wave amplitude across the
channels when compared to the cases with narrower ramps,
NCR and NXR. Downwave from the shelf and over the
constant water depth, the balance between nonlinearity and
dispersion is achieved once again and the wave profile be-
comes nearly identical across the channel, best seen in
snapshots taken at tinte= 60 in Fig. 2 (a) -(d).

To better assess the effect of the uneven seafloor on the
wave field, in Fig. 3, we look at the snapshots of the verti-
cal velocity at the free surface taken at four different times.
When compared to the flat linear ramp (FLR), the distribu-
tion of the vertical velocity is asymmetric from the center
line of the channel to the channel walls. As the wave de-
forms, in the concave cases, NCR and WCR, areas of neg-
ative vertical velocity is observed at the back of the wave
(best seen at time= 60 in Fig. 3 (a) and (b)), which have
larger magnitudes in the wider ramp case, WCR. The op-
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FIGURE 3. Snashots of the vertical velocity of a solitarysz
wave propagating over (a) NCR, (b) WCR, (c) NXR, (d) WXRs3

posite is observed in these regions for the convex cases, i.e.
larger positive vertical velocities, which are more remark-
able in the wider ramp case, WXR. The horizontal velocity
(not shown here due to page limits) is always larger at areas
with larger surface elevation.

To better investigate the change in the wave profile
across the width of the channels (due to the curved ramps),
in Figs. 4 to 8, we look at snapshots of surface elevation
across the center line and the wall of the channel. We keep
the height of the vertical axis the same in all these figures
for better comparisons. In all cases, as mentioned earlier,
the front side of the wave steepens and the wave amplitude
grows as the wave approaches the ramp. Downwave over
the shelf, soliton fission is observed, where two or three
solitons are formed and as the wave propagates, separate
from the leading soliton due to differences in their propa-
gation velocity (note that the soliton speedlis= v/1+ A,
always critical or supercritical).

When compared to the FLR case, in all curved cases,
there is a remarkable difference between the wave profile at
the center of the domain versus that at the channel wall, best
seen at times = 40 and 60 in Figs. 4 to 7, which, is due
to the wave refraction by the different curved bathymetry.
In the concave cases, NCR and WCR, the wave amplitude
is larger near the wall, and the opposite is observed for the
convex cases, NXR and WXR. At the later stages of soliton
propagation over the shetf=80 in Figs. 4 to 7, the ampli-
tude of the main solitons are nearly identical at the center
and wall cut of the channel. The amplitude of the second
and third solitons, however, are different at the center and
wall cut of the channel even = 80; in the concave cases,
the amplitude of the second soliton is larger at the center
line, while the opposite is observed in the convex cases.
Similarly, in the concave cases, at timle- 80, the second
soliton is separated from the main soliton at the center line
of the domain while it is still part of the main soliton at the
channel wall. In the convex cases, the opposite is observed,
i.e. the second soliton at the wall is separated, but not at the
center line.

Shown in Figs. 4 to 8, results of the GN equations
are in very good agreement with those obtained by [25]
by use of the Boussinesq equations. Results of the soli-
tary wave propagating over FLR, shown in Fig. 8, are
also in good agreement with the laboratory measurements
of Madsen and Mei [5] (who report 1.66 and 0.75 for the
amplitude of the first and second solitons, respectively)

and (e) FLR. The snapshots are taken at four different timeszput and calculations of Johnson [33] (who reports 1.71 and
plotted on the same figure. The color bars are kept the samesin0.66 for the amplitudes of the first and second solitons, re-

all figures to allow for better comparisons between cases.  3ss

6

spectively), although the peak of the soliton calculated by
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FIGURE 4. Snapshots of surface elevation of solitary wave FIGURE ‘5. Snapshots of surface elevation of solitary wave
propagating over the narrow concave ramp (NCR) at the cen- propagating over the wide . concave ramp (WCR) at the center
ter line (a-e) and wall cut (f-j), calculated by the GN model and line (a-e) and wall cut (f-]), calculated by the GN model and com-
compared with the Boussinesqg-class results of [25]. pared with the Boussinesg-class results of [25].

the GN equations are slightly smaller than those reported in different cases. Qualitatively, similar behaviour in wave

by [33], mainly because wave reflection (as large as agut diffraction and refraction is observed as those of a solitary
15% in this case, see [27]) is neglected in the KdV modéfs, Wave, with the difference that the incoming waves undergo
3 further deformation due to the interaction with the reflected

Cnoidal Wave 4 Waves, and with waves of smaller amplitudes.

In this section, results of the GN model for cnoidal
wave propagation over the five bottom ramps are presented.Concluding Remarks
The wave height and wavelength &te=0.12 andA = 20, 3ss A 3D model for nonlinear wave propagation in shallow
respectively. All other variables and numerical setup are water and over uneven bathymetry is developed based on
identical to those discussed in the previous sections. Seap-the Level | GN equations. A 3D numerical wave tank is
shots of the 3D surface elevation of cnoidal waves prep- created and a flat, linear ramp is considered in this study.
agating over these ramps obtained by the GN modelsare To further investigate the 3D effects on the wave refraction,
shown in Fig. 9. The cnoidal waves deform significantlysas four extensions are added systematically to the flat shelf,
they propagate over the ramp into the shelf, and this vasies creating concave and convex ramps of different widths. The

7 Copyright (© 2022 by ASME
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FIGURE 6. Snapshots of surface elevation of solitary wave

propagating over the narrow convex ramp (NXR) at the center
line (a-e) and wall cut (f-j), calculated by the GN model and com-

pared with the Boussinesq-class results of [25].

model is used to study solitary and cnoidal wave diffractitih
and refraction due to various forms of bathymetry. 408
Through the results obtained from the GN model, it'?3
observed that the waves undergo significant deformatiofias
they propagate over the ramps. Common across all cdses
the wave amplitude initially increases due to the strongér
nonlinearity. The growth of the wave amplitude across ffe
channel width varies depending on the shape of the ramp,

0.2

(a) Center line, t=0.0 (f) wall cut, t=0.0

0.15

—GN
- -Boussinesq (Schember, 1982)

(g) Wall cut, t=20

(h) Wall cut, t=40

(d) Center line, t=60 (i) wall cut, t=60

(e) Center line, t=80 (j) Wall cut, t=80

FIGURE 7. Snapshots of surface elevation of solitary wave
propagating over the wide convex ramp (WXR) at the center line
(a-e) and wall cut (f-j), calculated by the GN model and com-
pared with the Boussinesg-class results of [25].

solitons.

It is concluded that the GN equations, capturing non-
linearity, dispersion and wave reflection, which also satisfy
the boundary conditions exactly, are a remarkable alter-
native to perturbation-based methods, and a very efficient
alternative to any computational fluid dynamics model to
study wave transformation in coastal areas.

such that for concave cases, the wave amplitude is larger atREFERENCES

the channel walls, while the wave in the center line is larger
for the convex cases. Downwave of the ramp, soliton fi$-
sion is observed, where second (and sometimes third) &0li-
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