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Abstract—This study is concerned with hydroelastic
interaction of water waves with a fully-submerged
wave energy device. The oscillating component of the
submerged energy device is a circular, horizontal disc.
Wave interaction with the horizontal disc results in for-
mation of time-dependent pressure differential above
and below the disc, and consequently a periodic vertical
force. The wave-induced force on the disc results in
vertical oscillations of the horizontal disc. Rigid-body
motion of the disc is restricted to vertical oscillations
only by use of the guide rails that are attached to
the main frame of the energy device, secured on the
seafloor. The vertical oscillations of the disc is converted
to electricity by use of a direct-drive power take off
system. In this study, the effect of wave and structural
conditions on the oscillations are studied. The disc
may undergo some elastic deformation due to the wave
loads, and this may effect the performance of the wave
energy device. The hydroelastic deformations of the
disc, and its effect on the oscillations is also considered
by combining the three-dimensional linear potential
theory with the structural finite element analysis. The
wave-induced responses of the wave energy device,
including oscillations, and structural deformations are
presented for a range of wave frequencies, and results
are compared with existing laboratory measurements.
The elastic deformations are studied for the discs built
of different materials and results are compared and
discussed. The responses are analyzed for various PTO
and control systems.

Index Terms—Wave energy device, Wave-structure in-
teraction, Oscillating submerged disc, hydroelasticity

I. INTRODUCTION

Marine renewable energy resources, namely wave
energy, current and tidal energy, offshore wind
energy, offshore solar, and ocean thermal energy
conversion have received significant attention in
recent years, see e.g. [1]. Wave energy, when com-
pared to other sources of marine renewable en-
ergy, has some distinct advantages including (i)
predictability, (ii) highest energy density, and (iii)
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little energy loss during the wave propagation,
see [2]. However, wave energy has not yet been
able to provide an economically competitive energy
solution. There are several challenges with typical
wave energy convertors, including (i) challenges
associated to conversion of the wave energy into
desirable mechanical energy, (ii) variable wave di-
rections, (iii) large destructive impact of extreme
wave loads breaking on devices, (iv) corrosive ocean
environment and (v) the undesirable visual impact
and the effect on shipping, among others, see e.g.
[3], [4]. Hence, simple, directionally invariant, fully
submerged devices have received attention in recent
years, for example the wave carpet [5], [6], [7], or
the oscillating submerged disc device [8], [9].

Oscillating submerged discs are used as (i) the
core component of some wave energy devices (see
e.g. [8]), (ii) as a wave breaking device in shallow
water to mitigate severity of large waves approach-
ing shore lines, (see e.g. [10], [11]), and (iii) as
heaving plates in floating offshore structures (see
e.g. [12], [13]). The principle behind wave energy
devices with a horizontal disc as the prime mover
is based on the wave-induced pressure differentials.
Wave interaction with submerged horizontal discs
causes pressure differential above and below the
disc, and hence an oscillatory wave-induced vertical
force. If placed on fixed vertical guide rails, the disc
oscillates vertically due to the wave-induced force.

Wave-induced vertical oscillations of a sub-
merged disc has been studied by both laboratory
experiments and numerical simulation. [14] has
conducted a series of laboratory experiments and
considered various wave conditions and studied the
effect of spring stiffness and initial submergence
on the disc oscillations. Following the approached
presented by [15] for nonlinear wave loads on a
submerged plate, oscillations of a horizontal sub-
merged plate was studied by use of the Level I
Green-Naghdi equations in [9]. [11] has studied a
submerged heaving plate as a breakwater by using
a nonlinear potential theory solver. Their results
show that the heaving plate can significantly de-
crease the energy transmission at a certain condition
compared with the fixed one. In a study performed
by [16] based on the weakly compressible particle
hydrodynamics method, application of a submerged
disc in a wave energy system is further analyzed.
Computational fluid dynamics method is used by
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[17], which shows the submerged heaving plate
breakwater works better around short and medium
wavelengths.

While analysis of energy production from an os-
cillation disc is a challenging problem in hydrody-
namics, of course structural considerations should
also be included which add to the complexity of the
problem. In particular, a horizontal disc is subject
to deformations and hence hydroelastic analysis is
required.

Hydroelasticity is often used to determine the
deformations of marine structures subject to wave
loads, and is particularly important when load fre-
quencies are close to the natural frequencies of the
structure. A general review of the hydroelasticity
theory and applications can be found in [18]. Hy-
droelasticity has been an integrated part of design
and analysis of wave energy systems. For example,
[19] uses a semi-analytical approach to study the
piezoelectric wave energy converter, a submerged
elastic plate, whose leading and trailing edges are
fixed. [20] has developed a linear numerical model
to study an elastic wave energy converter, consist-
ing of a submerged elastic horizontal tube with
pressurized water inside the device. Wave-induced
elastic response of a flexible submerged horizontal
porous plate is studied by [21] and [22] by use of
the linear potential theory coupled with a matched
eigenfunction expansion. The wave induced elastic
response of a single, submerged porous disc and an
array of discs is also studied by [23]. By coupling
computational fluid dynamics with finite element
method, [24] investigates the interaction of a solitary
wave with a submerged elastic upper plate. Nonlin-
ear wave-induced deformations of fixed submerged
horizontal discs made of different material are stud-
ied by [25], where the wave loads are determined
by the Level I Green-Naghdi equations and the
response of the elastic disc is obtained by use of the
finite element method. See [26] for nonlinear wave
interaction with elastic plates on the free surface by
the Green-Naghdi equations.

Here, hydroelastic analysis of a submerged hori-
zontal heaving horizontal disc attached to a control
and power take-off system for energy production
is studied by use of the linear wave theory for the
fluid motion, coupled with the mode-shape analysis
for the structural consideration. In section III, the
rigid body motions and hydroelastic theories are
introduced. Numerical results are presented and
discussed in section IV. The paper is closed with
concluding remarks in section V.

II. SWED: THE SUBMERGED WAVE ENERGY

DEVICE

The fully submerged wave energy device under
consideration in this study (SWED) is proposed
and developed as an oscillating circular disc with
a fixed frame sitting on the seafloor. Wave pressure

differential above and below the disc results in its
vertical oscillations. The prime mover is restricted
to only vertical oscillations, and horizontal and
rotational motions are restricted by use of vertical
guided rails. The device benefits from the circu-
lar shape of the prime mover whose oscillation is
invariant with wave propagation direction. More
details about SWED can be found in [8], [14], [25]
and [27].

In this study, a spring is attached to the disc to
contribute to the motion control of the device. The
spring modifies the wave-induced motions, as well
as avoid the disc from moving towards the free
surface or the seafloor. The spring stiffness affects
the response of the disc and understanding the
behaviour of the disc under different springs is one
of the objectives of this study.

A direct-drive power take-off (PTO) system, lo-
cated on the sea floor, is connected to the disc to
convert the mechanical motion to electricity. The
PTO system is designed as a linear generator in-
cluding an air-cored ferromagnetic translator and
a stationary stator. The translator is linked to the
bottom face of the disc by a solid shaft. The effect of
the PTO system on the motion is similar to viscous
damper, resisting against the motion of the disc
proportional to its velocity. The effect of various
PTO damping on the motion of the disc will be
analysed in this study. A schematic of the energy
device and the domain is shown in Fig. 1.

Various parameters influence the power output
of SWED. These include the wave conditions (wave
period and wave height), initial submergence depth
of the disc, the spring stiffness, the PTO damping
coefficient, and disc material (mass and density) and
deformations, among others. The response of the
device under these variables will be studied here.
Throughout this paper, the water depth where the
device is located at, is constant.

III. THEORY

Wave-induced vertical oscillations of rigid and
flexible submerged horizontal discs are considered.
The fluid is incompressible and inviscid. The flow is
irrotational at the invariant water depth. Fluid’s ve-
locity potential satisfies Laplace’s equation through-
out the entire fluid domain and the incoming waves
are regular and long-crested. Under this frame
work, the linear hydrodynamics theory, combined
with the green function and constant panel meth-
ods, is used to obtain the frequency domain solu-
tions of wave interaction with the oscillating disc,
see e.g. [28], [29] and [30]. The linear structural
dynamics behavior is considered to solve elastic
responses of the disc based on assumed modes
approach. In this study, a right-hand Cartesian coor-
dinate system is used, whose origin is on the water
level, with X1 pointing to the right, X2 pointing
upwards and X3 pointing into the page.
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Fig. 1: Two dimensional schematic of wave interaction with the submerged wave energy device. D is the
diameter of the disc, tD is its thickness, S is the instantaneous submergence depth, measured from the top
surface of the (rigid) plate to the SWL, ζ is the deformation amplitude of the disc at a given point and
h = 0.3 m is the constant water depth in this study. L is the distance between the wave gauge and the
leading edge of the circular disc.

A. Rigid body hydrodynamics

Linear potential theory is used to study the wave-
induced vertical oscillations of a submerged hor-
izontal disc. In this approach, the total velocity
potential is decomposed into incoming potential,
diffraction potential, and radiation potentials due
to the motion of the body. All potentials satisfy
Laplace’s equation, the linear free surface boundary
conditions and the no-flux condition on the seafloor,
and the body boundary condition. The diffraction
and radiation potentials also satisfy the radiation
condition. Solution of the velocity potentials is ob-
tained by use of the Green function and panel
method.

Once the velocity potentials are obtained, the
hydrodynamic pressure can be determined by use of
Euler’s integral. The total force on the body consists
of the wave exciting force (due to the incoming
wave potential and diffraction potential), the hydro-
static forces, and the hydrodynamic radiation forces
(consisting of the added mass and wave-damping
forces). See [28], [29] among other for details.

The equation of motion of the vertically oscil-
lating body is then obtained by substituting the
involved forces into Newton’s second law and it
reads as

(ms +mf )ẍ2 + (cf + Cd)ẋ2 + kx2 =
∑

F2, (1)

where ẍ2, ẋ2 and x2 are the vertical acceleration,
velocity and displacement of the disc, respectively,
ms is the mass of the disc, and mf and cf are
the added mass and hydrodynamic damping coef-
ficients, respectively. Note that the oscillations start
from an equilibrium position and hence static forces
(weight and buoyancy) do not play a role on the
oscillations. The external spring force is −kx2 ,
where x2 is measured from the initial equilibrium
position of the disc, and k is the spring stiffness. The

damping force is −Cdẋ2, resembling the effect of the
PTO system, if used, and Cd is the constant damping
coefficient. The sum of other vertical external forces,
∑

F2 on the right hand side of Eq. (1) are given as
∑

F2 = Fw2
+ Ff , (2)

where Fw2
is the vertical component of the wave-

exciting force, and Ff is the friction force between
the disc and the guide rails, defined as Ff = −µFw1

,
where µ is the constant friction coefficient. Fw1

is the
horizontal component of the wave-exciting force on
the disc.

In the linear theory, the displacement x2 (and
consequently velocity and acceleration) and the
wave-exciting force Fw are harmonic functions with
frequency ω. Substituting x2 = x0e

iωt and Fw2
=

AF0e
iωt into Eq. (1), where A is the wave amplitude

and F0 is the exciting wave force per unit wave
amplitude, the linear equation of motion of the disc
is given by

(−ω2(ms +mf ) + iω(cf + Cd) + k)x0 = AF0. (3)

Solving (3) will give the transfer function x0/A,
which is the square root of the response amplitude
operator (RAO) of the vertical displacement of the
disc, in frequency domain.

B. Hydroelastic analysis

Wave loads may cause disc’s elastic deforma-
tions when incoming wave frequencies are close
to the natural frequencies of the elastic disc. The
elastic responses may alter device’s hydrodynamic
performance. To study this, linear hydroelasticity
is used here by coupling the finite element mesh
of the structure and the panel mesh of the fluid-
structure interface. Disc’s displacement in the fre-
quency domain solution is obtained by solving the
linear equation of motion based on the mode shape
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method. The mode shape of the disc is formed
through the finite element model, see [31], [32] for
details.

Motion of the disc is limited to only one degree
of freedom in rigid case where its displacement
is x2 = x0e

iωt. In total, there are N degrees of
freedom for the oscillations of the elastic disc, whose
displacement u(X1, X2, X3, t)

u = u0e
iωt, (4)

where u0 is the N × 1 vector of the displacement
amplitude of the elastic disc.

The assumed mode method is used to determine
the displacement of the elastic disc. In this ap-
proach, for the disc with N degrees of freedom,
its displacement u is represented by the summa-
tion of each mode vector where u(X1, X2, X3, t) =
∑N

j=1
ψj(X1, X2, X3)Yj(t), where Yj(t) is the non-

dimensional generalized coordinate of mode shape
ψj(X1, X2, X3). This can be written as

u = ψY, (5)

where ψ is the N×N modal matrix; hence, ψj is the
mode vector forming the jth column of the mode
matrix ψ. Y is a N × 1 vector whose first row is Y1,
i.e. N th row is YN .

The modes basis can be obtained by solving the
undamped free-vibration equation, given as

[Ks − ω2

jMs]ψj = O, j = 1, 2, ..., N (6)

where Ms is the structural mass of the disc, Ks is
the structural stiffness of the disc. Both Ms and Ks

are N × N matrices. ωj is the jth natural circular
frequency of the elastic disc.

The following orthogonal restrictions are used to
obtain the unique mode shapes through Eq. (6).

ψT
j Ksψq =

{

ω2

j , j = q,
0, j 6= q,

(7a)

ψT
j Msψq =

{

1, j = q,
0, j 6= q.

(7b)

The equation of motion of the elastic disc with
N degree of freedom including the radiation force,
wave exciting force and the associated spring,
damper and friction force, is formulated as

(−ω2(Ms+Mf)+iω(Cs+Cf )+(Ks+Kf+Kex))u = Ff ,
(8)

where Cs is the N × N structural damping matrix
of the disc. Mf is the N×N added mass matrix, Cf

is the N ×N hydrodynamic damping matrix, Kf is
the N ×N hydrostatic matrix and Kex is the N ×N
stiffness matrix of the external spring force. Ff is
the N×1 wave exciting force vector. Kex is specified
depends on needs. Cs and Kf are not included in
this study.

Substituting (5) into (8), then multiplying by ψT

forms

(−ω2(M∗

s +M∗

f ) + iωC∗

f + (K∗

s +K∗

ex))Y = F ∗

f , (9)

where M∗

s = ψTMsψ is the identity matrix, K∗

s =
ψTKsψ is a diagonal matrix whose diagonal com-
ponent is equal to the square of natural frequencies.
M∗

f = ψTMfψ, C∗

f = ψTCfψ, K∗

ex = ψTKexψ, and

F ∗

f = ψTFf . These are obtained after calculating the
hydrodynamic parameters for each mode shape.

A reduced strategy of M (where M << N ) total
modes is used in this study, see [32]. That is the
displacement u of the elastic disc is approximated
by

u ≈ ψNMYM , (10)

where ψNM is a N ×M modal matrix and YM is
a M × 1 vector. Substituting (10) to (9), YM can be
calculated, and then the displacement of elastic disc
under wave frequency ω is approximately estimated
by (10).

Computation of linear wave interaction with the
elastic disc are carried out in HYDRAN-XR. See [33],
[31], [34], [35], [36], and more recently in [37], for
more details about the hydroelastic model used in
this study.

IV. RESULTS & DISCUSSIONS

Linear theory is used to study the wave inter-
action with a fully submerged rigid and elastic
disc. A two dimensional schematic of the domain
is shown in Fig. 1, showing the involved parame-
ters. Results are first compared with the laboratory
measurements of [14]. This is then followed by
discussion on the effect of various parameters and
the responses. In this study, the friction force Ff

is not considered, although this is not required in
general. The effect of the friction between the disc
and the guide rails can be included, see [8], but this
is negligible when compared to other forces. In all
cases considered, there is a spring attached to the
disc. Limited cases, also include the viscous damper
and these are clearly stated. Initially, all results are
given for the rigid disc, followed by a section where
hydroelastic analysis is presented. Unless otherwise
stated, dimensions of the disc of the laboratory
measurements of [14] is used in the analysis. Unless
otherwise stated clearly in subsection, no damping
(resembling the PTO effect) is used in obtaining the
results presented here.

A. Comparisons with laboratory experiment

The laboratory experiments of [14] are used for
the comparison purpose. The experiments were con-
ducted in the Fluid Mechanics laboratory of the
University of Dundee, UK, in constant water depth
of h = 0.3 m. One wave gauge is placed upwave
from the disc to record the surface elevation, whose
location is shown in Fig. 1. A circular disc with
diameter D = 0.3 m and thickness of tD = 3 mm
is used in the experiments. The mass of the circular
disc (along with the attached linear bearing and the
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Fig. 2: Comparisons of time series of disc’s vertical
oscillations (S) and wave surface elevation (η) of
the laboratory experiments of [14] and numerical
results of this study (HYDRAN-XR). k = 35.7 N/m,
wave period T = 1 s, wave height H = 4 cm and
water depth h = 0.3 m. The surface elevation (η) is
recorded by the wave gauge located at the upwave
position, L = 0.6 m far away from the leading edge
of the disc.

connecting screws in the laboratory experiments) is
432 g. See [14] for more details about the experi-
ments, the specimen, and the setup of the tests.

Figure 2 shows comparison of time series of
disc’s oscillation (S) and wave surface elevation (η)
between laboratory measurements and numerical
results for two cases of different initial submergence
depths, S0 (defined as the initial distance from the
still-water level to the top of the disc). The disc
oscillates with the same period as the wave, and this
is not remarkable. The amplitude of the oscillations
varies with the initial submergence depth of the
disc. Oscillations of the disc is significantly larger at
the S0 = 0.3 h. Overall, very good agreement is ob-
served between the numerical results of this study
and the laboratory measurements of this study.

B. Effect of the initial submergence depth

Figure 3 shows the heave RAO of the submerged
disc for four initial submergence depths and two
spring stiffness. Shown in Fig. 3, the amplitude
of the vertical oscillations vary nonlinearly with
the wave period. Initial submergence depth has
inverse effect on the oscillations, that is, oscillations’
amplitude decreases with the increasing submer-
gence depth. The variation appears to be nonlin-
ear. Note that the laboratory experiments of [14]
are conducted for various wave heights. In Fig. 3,
results of the experiments (vertical oscillations) are
normalized by wave amplitude (to obtain the heave
RAO) and used for comparison with HYDRAN-
XR results. Overall, good agreement is observed

between results of the linear theory and the lab-
oratory experiments. The agreement is better for
shorter waves, with some deviations between the
results when the wave period increases. In this case,
the oscillation heave RAOs tend to one for larger
wave periods. The effect of the spring on the disc
oscillations is not remarkable in most of the cases
considered in Fig. 3. This, however, is not always
the case and hence, in the next section, we study the
effect of the spring stiffness on the disc oscillations.

C. Effect of the springs

It is desirable to optimize the system for largest
oscillations of the disc (and ultimately for maximum
power output). Shown in Fig. 4, we study the
change in oscillations’ amplitude with the spring
stiffness for a given wavelength (λ/D = 2, where λ
is the wavelength). For all four submergence depths,
a clear peak of the oscillations is observed. Shown
in Fig. 4, with the increasing submergence depth,
the peak of the oscillations occurs at larger stiffness,
and its magnitude increases (it is larger than 1 for
S0 = 0.5 and 0.7). This is due to the change in
the wave-induced force on the submerged disc at
larger depths. See e.g. [38], [39] for the effect of
change in submergence depth on the wave-induced
loads on a submerged plate. In general, in forced
oscillations, and as shown in [40], the point of res-
onance varies with the change of the external force
and the spring stiffness, among other parameters.
Here, the change of the wave-induced force on the
disc with larger submergence depth is such that
the peak of the oscillations occurs when the spring
stiffness is larger. To better study the effect of the
spring force on the oscillations, we consider four
different spring stiffness (including one with k = 0,
i.e. no spring effect) and obtain the results through
the linear solver. The heave RAOs are shown in
Fig. 5 for four submergence depths. The variation
of the oscillation amplitudes with spring stiffness
is nonlinear at different submergence depths. For
the case of no spring, the amplitude of the disc
oscillations converges to a fixed value (at periods
about T = 1 s in this particular case), and then
remains invariant. This is because the wave-induced
loads on a submerged disc becomes invariant of
the wave period (or wavelength), when the ra-
tio of the wavelength to disc diameter exceeds a
threshold (see [41] and [39]). Stronger springs seem
to decrease the structure’s natural periods where
resonance happens.

D. Effect of disc diameter

Shown in Fig. 6, the ratio of wavelength to disc
diameter λ/D plays a significant role on the disc
oscillations for all submergence depths. Oscillations
are remarkably smaller at λ/D < 1 i.e. when there
are multiple waves on the disc at the same time, and
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Fig. 3: Comparisons of the heave RAOs of the submerged disc obtained by the laboratory experiments of
[14] and numerical results of this study (HYDRAN-XR) of the submerged disc for four submergence depths.
Markers refer to the laboratory experiment results, and H is incident wave height.
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Fig. 4: Variation of the heave oscillations with the
spring stiffness at different submergence depths,
and for a constant wavelength (λ/D = 2).

this is expected. This is due to the significant effect
of the λ/D ratio on the wave-induced forces on the
disc. For λ/D < 1, multiple waves are in contact
with the disc at the same time, and their downward
and upward forces may interfere with each other
simultaneously. For cases where the wavelength
and disc diameter are comparable, at a given time,
only one wave is in contact with the disc and the
uplift and downward forces vary depending on the
lengths ratio (whether wave crest or trough are in

touch with the disc simultaneously or not). For long
waves where the wavelength is significantly larger
than the disc diameter, the object is almost like a
particle. See [41] for discussion on the variation of
the forces with wavelength to disc diameter ratio.

E. Effect of PTO

The vertical oscillation of the horizontal disc is
converted to electricity by use of a direct-drive PTO
system. The PTO affects the oscillations similar to a
damper. To study the PTO effect, in this section we
consider the wave induced oscillations of the disc
under the influence of different PTO strengths (i.e.
different damping coefficients).

The results are shown in Fig. 7. The effect of
damping force on oscillations of the disc are studied
for four different submergence depths. It is observed
that the damping coefficient Cd has a reverse in-
fluence on oscillations of the disc. The maximum
oscillations of the disc are reduced significantly
when Cd = 40 Ns/m and Cd = 100 Ns/m, with
very small oscillation under the damping coefficient
Cd = 100 Ns/m and initial submergence S0 = 0.7 h.

F. Effect of elastic deformations

In this section, we shall study the elastic deforma-
tions of the submerged disc due to the wave loads.
For this hydroelastic analysis, we consider a circular
disc with the same geometry and mass discussed in
the previous sections. The mass density of the disc is
2037 Kg/m3, with Young’s modulus and Poisson’s
ratio of 1.5E+10 Pa and 0.3, respectively. The flex-
ible disc undergos vertical rigid-body oscillations
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TABLE I:
MATERIAL PROPERTY.

Concrete Aluminium Titanium Steel

ρ(kg/m3) 2300 2770 4620 7750
E(Pa) 3.00E+10 7.10E+10 9.60E+10 1.93E+11
ν 0.18 0.33 0.36 0.31

as well as vertical bending deformations. In total,
12 modes including 1 rigid mode and 11 flexible
bending modes are adopted in this study. RAOs
of the first four bending modes of the elastic disc
are shown in Fig. 8. Bending mode 1 contributes
more significantly to disc’s bending RAO, shown in
Fig. 8. This is substantially smaller than the rigid-
body vertical oscillations as expected.

In practice, the disc may be built of different ma-
terials, and the responses of the elastic discs made of
different materials vary under the same wave loads.
Here, the deformation magnitude of the elastic discs
made of concrete, aluminium alloy, titanium and
steel, is studied for different submergence depths.
Their material properties are listed in Table I where
E is Young’s modulus and ν is Poisson’s ratio.

Shown in Fig. 9, the maximum deformations
of the elastic circular disc at leading edge point
vary with incoming wave frequency at different
initial submergence depths. The results show in-
creasing submergence depth affects the elastic disc’s
response inversely. It is also observed that the elas-
ticity properties of the disc have little effect under
waves with larger periods. This can be also seen
in Fig. 10, which shows the spatial distributions
of the elastic disc’s maximum deformations at the
initial submergence of S0 = 0.1 h for four different
wave frequencies. Comparing with other materials,
concrete shows the largest deformations followed
by aluminium, titanium and steel.

V. CONCLUDING REMARKS

Wave-induced responses of a fully-submerged
oscillating horizontal disc is studied numerically
by using the linear theory. Both rigid and elastic
responses are considered in this study.

Vertical oscillations are first studied by comparing
with the laboratory measurements. Numerical re-
sults show excellent agreement with shorter waves.
The model is then used to analyse the responses
of the device under various wave and structural
conditions.

The oscillations decrease with increasing submer-
gence depth due to smaller hydrodynamic pressure
differentials. The spring generally has a nonlinear
influence on disc’s oscillations. The damping force
affects the maximum oscillations adversely. The os-
cillations of the disc are reduced significantly with a
large damping coefficient for different submergence
depths.

The ratio of wavelength to disc diameter λ/D
is extended further by changing disc’s diameter.
This is of importance to disc’s oscillation amplitude
for all submergence depths. Oscillations are signifi-
cantly smaller at λ/D < 1.

Linear hydroelasticity is also used to study hy-
droelastic response of the disc. One rigid mode
and eleven flexible modes are adopted to account
for vertical oscillations and bending deformations,
respectively. The disc deforms much more signifi-
cantly under shorter waves and the elastic response
are negligible for longer incoming waves. The elastic
response of the disc made of four different materi-
als are considered including concrete, aluminium,
titanium and steel. The leading and trailing edge
of the disc undergo largest structural deformations,
and this is not remarkable. Concrete has the largest
elastic deformations while the steel is inactive for
various wave frequencies.
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