

CE50031 Hydrodynamics of Fluid-Structure Interaction

MODULE GUIDE and SYLLABUS

Module Information	CE50031 Hydrodynamics of Fluid-Structure Interaction Semesters 1 and 2, 2019-2020 Academic Year				
Module Instructor	Masoud Hayatdavoodi, Ph.D. Lecturer School of Science and Engineering	Office: Fulton Building, J10 E-mail: mhayatdavoodi@dundee.ac.uk Website:https://sites.dundee.ac.uk/masoud			
Semester 1 Class Schedule	 Lectures: Weeks 1-4, 8-12, Monday, 04:00PM - 05:00PM at Fulton H2 Weeks 1-4, 8-12, Thursday, 11:00AM - 12:00PM at Fulton H2 Tutorials: Weeks 3, 4, 8 and 10, Wednesday, 02:00PM - 03:00PM at Fulton H2 Laboratory: Weeks 8-12, Thursday, 11:00AM - 01:00PM at Fulton F13, Fluid Mechanics Lab 				
SEMESTER 2 CLASS • Lectures: SCHEDULE • Weeks 15-25, Monday, 01:00PM - 02:00PM at Fulton H2 Weeks 15-25, Thursday, 11:00AM - 12:00PM at Harris LT					
	 Tutorials: Weeks 17, 19, 21 and 23, Wednesday, 02:00PM - 03:00PM at Fulton H2 Laboratory: Weeks 18-22, Thursday, 09:00AM - 11:00AM at Fulton F13, Fluid Mechanics Lab 				
Office Hours	Wednesday: 12:00PM-01:00PM Thursday: 12:00PM-01:00PM And by appointments.				
Grading	Written Assignments (about six over the year) * 30% Laboratory Assignments (about two over the 10% year)* Final Examination ** 60% * The minimum pass mark for the combined coursework is 30%. ** The minimum pass mark for the final examination is 30%.				
GRADING SCALE	$\begin{array}{lll} {\rm A} & \geq 70\% \\ {\rm B} & \geq 60\% \\ {\rm C} & \geq 50\% \\ {\rm D} & \geq 40\% \\ {\rm F} & < 40\% \end{array}$				
For more information see: https://www.dundee.ac.uk/governance/policies/policy-taught-provision/					

References	Textbooks			
	 Newman, John N. (1977), Marine Hydrodynamics, The MIT Press, 432 pp., ISBN: 978-0262140263. 			
	• Batchelor, G.K. (2000), An Introduction to Fluid Dynamics, Cambridge University Press, 658 pp., ISBN: 978-0521663960			
	• Kundu, Pijush K., Cohen, Ira M., Dowling, David R. (2011), Fluid Mechanics, Academic Press; 5 edition, 920 pp., ISBN: 978-0123821003.			
	 Currie, I.G. (2012), Fundamental Mechanics of Fluids, CRC Press, 603 pp., ISBN 978- 1439874608 			
	• Chakrabarti, S.K. (2003), Hydrodynamics of Offshore Structures, WIT Press / Computational Mechanics, 464 pp., ISBN: 978-0905451664.			
	• Sarpkaya, Turgut and Isaacson, Michael (1981), Mechanics of Wave Forces on Off- shore Structures, Van Nostrand Reinhold Company; First edition, 651 pp., ISBN: 978- 0442254025.			
	• Le Méhauté, Bernard (1976), An Introduction to Hydrodynamics and Water Waves, Springer Berlin Heidelberg, 322 pp., ISBN: 978-3-642-85569-6			
	• Lighthill, James (2001), Waves in Fluids (Cambridge Mathematical Library Series), Cambridge University Press; 2 edition, 524 pp., ISBN: 978-0521010450.			
	• Dean, Robert G. and Dalrymple, Robert A. (1991), Water Wave Mechanics for Engineers & Scientists (Advanced Series on Ocean Engineering-Vol. 2), World Scientific Pub Co Inc, 353 pp., ISBN: 978-981-02-0421-1.			
	• Whitham, G. B. (1999), Linear and Nonlinear Waves, Wiley-Interscience, 660 pp., ISBN: 978-0471359425.			
	Online References			
	• Journée, J.M.J. and Massie, W.W. (2001), Offshore Hydromechanics, Delft University of Technology, First Edition, 570 pp., available online at http://www.shipmotions.nl/DUT/LectureNotes/OffshoreHydromechanics.pdf.			
	• Le Mehaute, B. (1976), An introduction to hydrodynamics and water waves, Springer- Verlag Berlin Heidelberg, 323 pp., 978-3-642-85567-2.			
	https://repository.library.noaa.gov/view/noaa/10669/noaa_10669_DS1.pdf.			
	 Dhanak, M. R. and Xiros, N. I. (Eds.), (2016). Springer Handbook of Ocean Engineering, Springer, 1345 pp., ISBN 978-3-319-16649-0. http://www.springer.com/gb/book/9783319166483. 			
	(Available to UoD students free of charge through the library links.)			
Module Communications	Module-related material, along with class communications, are held on My Dundee portal and communicated through Emails. Students are expected to check their emails and to use the module webpage regularly. All required material should be downloaded from My			

	Dundee and stored locally; access to the module page will not be extended beyond the current academic year.
Module Aims	The aim of this module is to enable individuals to analyse the theoretical and experimental principles of fluid-structure interaction problems in ocean engineering, and to develop and extend understanding of engineering principles as they relate to the design of floating or fixed structures in the oceans.
Intended Learning Outcomes	 On completion of this module students should be able to: clearly understand and explain the principles of the motion of viscous and ideal fluids and laminar and turbulent boundary layers in fluid mechanics, demonstrate a comprehensive understanding of linear and nonlinear water wave theories and analyse the kinematics, dynamics and propagation properties of water waves, critically assess the applicability of different analytical and empirical approaches in calculating wave and current loads on structures, concisely formulate the diffraction, radiation and motion of floating and submerged bodies in deterministic and irregular waves, be equipped to design offshore structures for extreme ocean conditions, develop effective self-learning skills.
Prerequisites	CE40006 Environmental Hydraulics or equivalent background.
Attendance Polices	The module content will be primarily discussed in class. Some (and NOT all) module material will be made available online through My Dundee portal. It is assumed that students will attend all lectures and tutorials, and take notes of the material written on the board and discussed in class.
Final Examination:	The final examination of this module will be given at the end of Semester 2. The University of Dundee Semester 2 examinations will take place 27 April – 29 May 2020. Exact day and time of this module's examination will be set and announced by the University prior to the examination month.

Semester 1 Tentative Schedule

Monday		WEDNESDAY		THURSDAY	
Sep 16th	1	18th	2	19th	3
Module Introduction				Indicial Notation &	
				Cartesian Tensors	
2014	4	25th	5	26th	6
Dimensional Analysis				Dimensional Analysis	
30th	7	Oct 2nd	8	3rd	9
Viscous Fluid Motion		Tutorial I		Viscous Fluid Motion	
7th 1	10	9th	11	10th	12
Viscous Fluid Motion		Tutorial II		Ideal Fluid Motion	
14th 1	13	16th	14	17th	15
21st 1	16	23rd	17	24th	18
28th 1	19	30th	20	31st	21
Nov 4th 2	22	6th	23	7th	24
Ideal Fluid Motion		Tutorial III		Ideal Fluid Motion	
11th 2	25	13th	26	14th	27
Linear Wave Theory				Linear Wave Theory	
-		2011		٠	
	28	20th	29	21st	30 ,
Dispersion Relation		Tutorial IV		Particle Kinematics an Dynamics	nd
25th 3	31	27th	32	28th	33
Particle Kinematics and				Wave Power and Energy	gy
Dynamics					

Semester 2 Tentative Schedule

Monday	WEDNESDAY	THURSDAY	
Jan 20th 1	22nd 2	23rd 3	
Nonlinear Wave Theories		Irregular Waves	
27th 4	29th 5	30th 6	
Irregular Waves		Irregular Waves	
Feb 3rd 7	5th 8	6th 9	
Elementary Singularities	Tutorial I	Elementary Singularities	
10th 10	12th 11	13th 12	
Elementary Singularities		Wave Diffraction	
17th 13	19th 14	20th 15	
Wave Diffraction	Tutorial II	Wave Diffraction	
24th 16	26th 17	27th 18	
Wave Loads		Wave Loads	
Mar 2nd 19	4th 20	5th 21	
Hydroelasticity	Tutorial III	Wind and Current Loads	
9th 22	11th 23	12th 24	
Floating Bodies		Floating Bodies	
16th 25	18th 26	19th 27	
Floating Bodies	Tutorial IV	Floating Bodies	
23rd 28	25th 29	26th 30	
Random Responses		Random Responses &	
		Exam Review	