

EG21006 Fluid Mechanics

MODULE GUIDE AND SYLLABUS

Module Information	EG21006 Fluid Mechanics Semester 1, 2018-2019 Academic Year		
Module Instructor	Masoud Hayatdavoodi, Ph.D. Lecturer School of Science and Engineering	Office: Fulton Building, J10 E-mail: mhayatdavoodi@dundee.ac.uk Website:https://sites.dundee.ac.uk/masoud/	
CLASS SCHEDULE	 Lectures: Weeks 3-12, Monday, 10:00AM - 11:00AM at Fulton F20 Weeks 3-12, Thursday, 09:00AM - 10:00AM at Carnelley Large LT Tutorials: Weeks 4, 6, 8 and 10, Thursday, 10:00AM - 11:00AM at Scrymgeour 4.01 		
	 Laboratory*: Weeks 6-12, Friday, * Note that students will only atte and times for each student will be 	02:00PM - 05:00PM at Fulton F13, Fluid Mech. Lab nd ONE 45-minute session during this period. Dates announced by a week before the first experiments.	
Office Hours	Monday: 12:00PM-01:00PM Thursday: 12:00PM-01:00PM And by appointments.		
Grading	Online Assignments (four)*20Laboratory Assignment (one) *20Final Examination **60* The minimum pass mark for the cor** The minimum pass mark for the fir	% % nbined coursework is 30%. nal examination is 30%.	
Grading Scale	$\begin{array}{llllllllllllllllllllllllllllllllllll$	ance/policies/policy-taught-provision/	
Degree Exam	Semester 1 Examination begins on Monday $03/12/2018$ and ends on Friday $14/12/2018$. Exact day and time of this module's examination will be set and announced by the Univer-		

sity prior to the examination week.

Recommended Textbooks	• White, F. M. (2015). Fluid Mechanics, McGraw-Hill Education; 8 edition, 864 p., I 978-0073398273.	
	• Douglas, John F., Gasoriek, Janusz M., Swaffield. John A. and Jack, Lynne B. (2011). Fluid Mechanics, Prentice Hall; 6 edition, 1012 p., ISBN: 978-0273717720.	
	 Munson, Bruce R., Rothmayer, Alric P., Okiishi, Theodore H. and Huebsch, Wade W. (2012). Fundamentals of Fluid Mechanics, Wiley; 7 edition, 792 p., ISBN: 978-1118116135. 	
	• Kundu, Pijush K., Cohen, Ira M., Dowling, David R. (2015). Fluid Mechanics, Academic Press; 6 edition, 928 p., ISBN: 978-0124059351.	
Additional Resources	 http://web.mit.edu/hml/ncfmf.html http://www.efluids.com http://ocw.mit.edu http://www.annualreviews.org/journal/fluid 	
Module Communications	Module-related material, along with class communications, are held on <i>My Dundee</i> portal. Headlines of some (and NOT all) module material, and some tables and figures will be made available online through <i>My Dundee</i> portal. All Assignments and the solution sets, previous years' examinations, and further helpful resources will be made available online through <i>My Dundee</i> portal. Students are expected to check and use the module webpage regularly. Assignment sheets will be made available at least 7 days before the submission date. All required material should be downloaded from My Dundee and stored locally; access to the module page will not be extended beyond the current academic year.	
Module Aims	To introduce the fundamental theoretical and practical aspects of fluid mechanics.	
Intended Learning Outcomes	 To develop knowledge of and proficiency in the the basic laws of fluid mechanics, the properties of fluids, the terminology used and to recognize the factors that affect flow in pipes and channels. To develop an understanding of an appreciation of fluid pressure and velocity, viscosity, laminar and turbulent flow, shear forces and friction factors, conservation of mass and momentum, Bernoullis equation, steady flow in pipes, energy losses in pipes, uniform channel flow. To be able to carry out simple hydraulic calculations for pipes and channels, carry out laboratory experiments to measure piezometric heads, volumetric flow rates and friction losses in pipes, and to analyze the results within the theoretical framework of the lecture module. 	
Prerequisites	None	
Attendance Polices	The module content will be discussed in class. It is assumed that students will attend all classes (lectures and tutorials), and take notes of the material written on the board and discussed in class. Those who miss any of the lectures must follow a combination of approaches to catch up with the class as soon as possible. These include, but not limited to, (i) use of the concise reading list (available on $My \ Dundee$), (ii) use of the module content and schedule (next page), (iii) discussion with the module instructor during office hours, and (iv) note-borrowing from fellow students.	

EG21006 Fluid Mechanics

Tentative Schedule

Monday	THURSDAY
Sep 24th 1 Module Introduction	27th 2 Preliminaries; Fluid Properties
Oct 1st 3	4th 4
Pressure	Hydrostatics; Tutorial 1
8th 5	11th 6
Hydrostatics	Fluid Kinematics and Dynamics
15th 7	18th 8
Conservation Laws	Governing Equations; Tutorial 2
22nd 9	25th 10
Pipe Flow	Pipe Flow
29th 11	Nov 1st 12
Pipe Flow	Pipe Flow; Tutorial 3
5th 13	8th 14
Open-channel Flow	Open-channel Flow
12th 15	15th 16
Open-channel Flow	Open-channel Flow; Tutorial 4
19th 17	22nd 18
Dimensional Analysis	Dimensional Analysis
26th 19	29th 20
Final Exam Review	Reading Day and Review