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Abstract Diffraction of nonlinear waves by single or multiple in-line vertical cylinders in shallow water is
studied by use of different nonlinear, shallow-water wave theories. The fixed, in-line, vertical circular cylinders
extend from the free surface to the seafloor and are located in a row parallel to the incident wave direction. The
wave–structure interaction problem is studied by use of the nonlinear generalized Boussinesq equations, the
Green–Naghdi shallow-water wave equations, and the linearized version of the shallow-water wave equations.
The wave-induced force and moment of the Green–Naghdi and the Boussinesq equations are presented when
the incoming waves are cnoidal, and the forces are compared with the experimental data when available.
Results of the linearized equations are compared with the nonlinear results. It is observed that nonlinearity is
very important in the calculation of the wave loads on circular cylinders in shallowwater. The variation of wave
loads with wave height, wavelength and the spacing between cylinders is studied. Effect of the neighboring
cylinders, and the shielding effect of upwave cylinders on the wave-induced loads on downwave cylinders are
discussed.

Keywords Cnoidal wave ·Multiple in-line vertical circular cylinders ·Wave force and moment · Boussinesq
equations · Green–Naghdi equations

1 Introduction

Interaction of nonlinear cnoidal waves with one or multiple in-line, fixed, vertical cylinders of constant circular
cross section in shallow water is considered here. Vertical cylinders often are used in shallow waters, where
the higher-order effects may significantly affect most wave properties, and therefore, the resultant forces and
moments. Although the higher-order effects are expected to be important in determining the wave and cylinder
interaction when wave height is large, there have been moderate amounts of efforts in this regard; however,
most of them being in the shorter wavelength range.

The linearized potential problem of wave diffraction by a single vertical cylinder was solved by MacCamy
and Fuchs [41] for an ideal fluid. The infinite depth solution of the same problem was obtained earlier by

Communicated by William Dewar.

M. Hayatdavoodi (B)
Civil Engineering Department, School of Science and Engineering, University of Dundee, Dundee DD1 4HN, UK
E-mail: mhayatdavoodi@dundee.ac.uk

D. R. Neill
National Optical Astronomy Observatory, 950 N Cherry Ave., Tucson, AZ 85719, USA

R. C. Ertekin
College of Shipbuilding Engineering, Harbin Engineering University, Harbin, China

http://orcid.org/0000-0003-3554-3438
http://crossmark.crossref.org/dialog/?doi=10.1007/s00162-018-0466-0&domain=pdf


M. Hayatdavoodi et al.

Havelock [29]. Scattering of waves for very long wavelength (solitary wave) by a cylindrical object (island)
was first solved by Omer and Hall [54].

Isaacson [35] used the integral equation method to investigate the interaction of long waves with isolated
cylinders. Abul-Azm andWilliams [1] studied some of these effects by an approximate method. Chau and Tay-
lor [8] used a second-order analysis and demonstrated that the second-order effects caused the hydrodynamic
pressure to penetrate deeper into the water column. They also showed that the second-order diffraction effects
in shallow water are substantially different from that in deep water. Malenica andMolin [42] used a third-order
analysis to investigate the wave–cylinder interaction and showed that the third-order effects could alter the
triple frequency component of the diffraction potential. Kriebel [39,40] studied the second-order diffraction
of waves by a vertical cylinder and compared the calculations with experimental data, and Newman [51,52]
investigated the diffraction of waves by a vertical cylinder up to third order through perturbation analysis.

Nonlinear wave loads on a slender vertical cylinder is studied by Faltinsen et al. [22] by assuming an
inviscid and incompressible fluid and irrotational flow and solving nonlinear velocity potentials. Ferrant et
al. [24] investigated the nonlinear wave scattering and diffraction forces on three-dimensional bodies, including
a vertical cylinder, by use of the boundary-element method. Bai and Taylor [3] used the domain decomposition
method to study the fully nonlinear wave diffraction of linear waves by a vertical cylinder in monochromatic
waves as well as focused, group waves. Kim et al. [36,37] used the finite-element method to study the time-
domain propagation of Stokes waves and their interaction with vertical cylinders and compared the run-up
with the stream function theory of Ferrant [23]. Nonlinear loads on vertical cylinders and floating bodies in
irregular waves are studied by Sclavounos [61,62] through the time derivative of the fluid impulse.

Majority of the studies on wave interaction with vertical cylinders have focused on deep water applications.
In shallow water, and for large waves where nonlinearity and dispersion effects are significant, the use of
shallow-water wave equations is inevitable, see, e.g., Kim et al. [37], Swan and Sheikh [66], for the effects of
nonlinearity andwave steepness onwave loads on a vertical cylinder. Studies on solitary and cnoidal wave loads
on vertical cylinders are very limited, see Apelt and Piorewicz [2], Wang et al. [71], Yang and Ertekin [80],
Wang and Jiang [70], Yates and Wang [81], Zhong and Wang [86]. Recently, with the development of marine
renewable energy devices, further attention is paid to nonlinear wave diffraction in shallow water by vertical
cylinders, see, e.g., Paulsen et al. [55], who solved the Navier–Stokes equations (using OpenFOAM) to study
the wave forces on vertical cylinders in water of finite depth. Similar study was performed byMo et al. [45,46]
by ignoring the effect of viscosity and solving Euler’s equations.

Yet another approach to study the problem of interaction of nonlinear waves with vertical cylinders in
shallow water is by use of nonlinear, shallow-water wave theories, for example, the Green–Naghdi (GN)
equations (Green and Naghdi [25]) and the Boussinesq equations (Wu [77]). The GN equations and the
Boussinesq equations both have been applied to many hydrodynamic problems concerning diffraction loads
on structures in shallow water. The Boussinesq equations were used by, for example, Wang et al. [71] to study
solitary wave scattering by a vertical cylinder, by Nadiga et al. [47] to study wave diffraction due to an uneven
bottom, and by Schmitt et al. [60] to study wave loads on a bottom hinged oscillating wave converter. The
Level I Green–Naghdi equations are used, for example, to determine the hydroelastic response of VLFS to
solitary and cnoidal waves by Ertekin and Kim [14], Ertekin et al. [20], Xia et al. [78,79], Ertekin and Xia [16],
and by Demirbilek and Webster [10], Ertekin and Sundararaghavan [15] to study refraction and diffraction
of nonlinear waves in coastal waters and to study solitary and cnoidal wave loads on horizontal decks by
Hayatdavoodi and Ertekin [30–32], Hayatdavoodi et al. [33]. Further discussion on the recent developments
on the Green–Naghdi equations, with comparisons between high-level equations and laboratory experiments,
can be found in Kim et al. [38], Ertekin et al. [21], Zhao et al. [83–85], among others. Theoretical models based
on the Green–Naghdi and the Boussinesq equations were recently developed by Neill et al. [50] to study the
interaction of solitary wave with multiple in-line, vertical cylinders. Good agreement was observed between
the Green–Naghdi and the Boussinesq equations solitary wave results and laboratory measurements. Cnoidal
wave run-up on a single vertical cylinder was studied by Zhang and Teng [82] by solving the Boussinesq
equations by use of finite-element method.

Our objective in this work is to study the problem of diffraction of cnoidal waves by single or multiple in-
line vertical cylinders of finite diameter in shallowwater.Wewill use the Level I GN equations, the generalized
Boussinesq equations, and the linearized version of these shallow-water wave equations, to numerically solve
the initial-boundary-value problem of cnoidal waves interaction with vertical cylinders and to determine the
horizontal force and overturning moment on the cylinders in shallow water. Different cnoidal waves can be
generated by use of different shallow-water wave equations, and hence, wave loads on the structures may
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be different. The effect of nonlinearity on the wave-induced loads on the vertical cylinders is discussed by
comparing the nonlinear results with the linear solution.

The GN and Boussinesq nonlinear, shallow-water wave theories, along with the linearized version of the
equations, are introduced next. This is followed by a discussion of the numerical modeling of the problem.
Results of cnoidal wave diffraction by a single and multiple in-line vertical cylinders are discussed in Sect. 5.
In presenting the results, and comparisons with other predictions and experiments when available, we first start
with the single, isolated cylinder case. Results for multiple cylinders, namely two and three in-line cylinders,
and the effect of neighboring cylinders on the wave loads are discussed after. The paper is closed with some
concluding remarks.

2 The shallow-water wave theories

A right-handed Cartesian coordinate system, whose origin is at the still-water level (SWL) and on the entrance
boundary where the numerical wavemaker is located, is used. The incident waves propagate in the positive
x-direction, along the line of symmetry. The y-direction is parallel to the entrance boundary, and the z-direction
is vertical, with positive z pointing to the opposite of the gravitational acceleration direction. A schematic of
the theoretical wave tank is shown in Fig 1. The fixed vertical cylinders are of constant circular cross section
and extend from the free surface to the flat and stationary sea floor. The problem is symmetric with respect to
the line x-direction that passes through the cylinder center, and hence, only one half of the physical region is
considered for the computations. The symmetric numerical tank will be discussed in Sect. 3.4.

In this study, the fluid is initially quiescent and at time t = 0, the wavemaker starts generating cnoidal
waves. The initial-boundary-value problem of wave interaction with the vertical cylinders will be solved by
both the GN and the gB equations, or their linearized version. A summary of the GN and the gB equations are
presented here. Further details of these models can be found in Neill et al. [50], who studied the problem of
solitary wave interaction with multiple, in-line vertical cylinders by use of the GN and the gB equations.

Fig. 1 Schematic of the theoretical wave tank, showing the Cartesian coordinate system, the domain boundaries, and three in-line
cylinders (for example). Figure not to scale
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Unless otherwise mentioned, all variables are dimensionless using (ρ, g, h) as a dimensionally inde-
pendent set, where ρ is the mass density of the fluid, g is the gravitational acceleration and h is the water
depth.

2.1 The Green–Naghdi equations

The nonlinearGreen–Naghdi (GN) equations forwaterwaves are first given byGreen andNaghdi [26] based on
the theory of directed fluid sheets and byGreen andNaghdi [25,27], through the exact equations for propagation
of waves in a homogeneous, incompressible, inviscid fluid. In these equations, irrotationality of the flow is
not required, although the equations can also be derived for irrotational flows. Using a direct approach, Green
and Naghdi [26] postulated the integral balance equations of conservation of mass, momentum, moment of
momentum (or director momentum), and energy to a deformable fluid sheet. The resulting GN equations
satisfy the nonlinear boundary conditions exactly, identically conserve mass, and exactly satisfy the integrated
momentum equations in an average sense. Unlike the KdV equations, the GN equations are invariant under
Galilean transformation.

The GN equations are classified based on the level of the polynomial functions used to prescribe the
distribution of the vertical velocity along the water column. The Level I GN equations, also known as the
restricted theory, are a specialized version of the more general results given by Green and Naghdi [28] and
assume a linear distribution of the vertical velocity along the water column. This assumption, which is the
only one made about the kinematics of the fluid sheet, results in the horizontal velocities being invariant
in the vertical direction for an incompressible fluid. The resultant Level I GN equations, hence, are mostly
applicable to the propagation of fairly long waves in shallow water. High-level GN equations, applicable to
wave propagation in any water depth, are obtained by assuming higher-order polynomials for the distribution
of the vertical velocity along the water column. Among others, see Shields and Webster [64], Webster and
Kim [72], Demirbilek and Webster [9], and more recently Zhao et al. [83–85], for discussion on high-level
GN equations.

The Level I GN equations are given here in the same form first presented by Ertekin [11] and Ertekin et
al. [17]. In this form of the equations, the fluid is inviscid, and the flow is incompressible, but irrotationality is
not required. The free surface, ζ(x, y, t), is measured from the SWL. The Level I GN equations as used here
are given by the conservation of mass and momentum in dimensionless form as

ζt + ∇{(1 + ζ − α)V } = αt , (1)

u̇ + ζx + p̂x = −1

6
{[2ζ + α]x α̈ + [4ζ − α]x ζ̈ + (1 + ζ − α)[α̈ + 2ζ̈ ]x } , (2)

v̇ + ζy + p̂y = −1

6
{[2ζ + α]y α̈ + [4ζ − α]y ζ̈ + (1 + ζ − α)[α̈ + 2ζ̈ ]y} , (3)

w(x, y, z, t) = α̇ + (z + 1 − α)

(ζ + 1 − α)

(
ζ̇ − α̇

)
, (4)

PI (x, y, t) =
(
1

6

)
(1 + ζ − α)2

(
α̈ + 2ζ̈ + 3

) + p̂ (1 + ζ − α) , (5)

p̄(x, y, t) =
(
1

2

)
(1 + ζ − α)

(
α̈ + ζ̈ + 2

) + p̂ , (6)

where α(x, y, t) is the elevation of the bottom of the fluid sheet, and superposed dot is the material time
derivative. A double superposed dot denotes the second material time derivative, and ∇ is the gradient vector
operator. The subscripts x, y and t indicate partial differentiation with respect to the variables. PI is the
integrated (over the water column) pressure, p̄ is the pressure on the bottom curve (α), and p̂(x, y, t) is the
pressure on the top curve of the fluid sheet. The velocity field is defined by V = ue1+ve2+we3, where e1, e2
and e3 are the unit base vectors in the x, y and z directions, respectively. The horizontal velocity components,
u and v, do not depend on the vertical z coordinate in the Level I GN equations.

In the absence of any perturbation expansion and scaling parameter, the order of error of the GN equations
cannot be defined. Applicability and accuracy of the GN equations for various wave conditions must be
determined by comparison with laboratory experiments. See, for example, Ertekin [12] and Webster and
Wehausen [73] for further discussion on this.
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In this work, the GN equations are applied to the problem of wave interaction with vertical cylinders
following the same approach discussed in Neill et al. [50].

2.2 The generalized Boussinesq equations

We also use the Boussinesq equations to study the problem of interaction of nonlinear, shallow-water waves
with vertical cylinders. For a homogeneous, incompressible and inviscid fluid, and unlike the GN equations,
the Boussinesq equations are derived by assuming that the flow is irrotational. Hence, the velocity field is
described by the velocity potential φ. A fundamental difference between the Boussinesq equations, of any
form, and the GN equations, is the use of perturbation theory in deriving the equations. In the Boussinesq
equations, the unknown velocity potential φ and surface elevation ζ are expanded over the linear solutions by
use of scaling parameters, see Boussinesq [4]. Hence, the boundary conditions are satisfied approximately by
the Boussinesq equations. Similarly, the conservation of momentum is satisfied only approximately.

Various versions of Boussinesq equations are discussed in the literature. Here, we use the generalized
Boussinesq (gB) equations in the form first derived by Wu [77] for propagation of waves in constant water
depth. See, for example, Nwogu [53] for an alternative form of the Boussinesq equations. The gB equations
are given by the conservation of mass and momentum in dimensionless form by

ζt + ∇ · {(1 + ζ )∇φ} = 0, (7)

φt + 1

2
||∇φ||2 + ζ = 1

3
∇φt , (8)

where φ is the layer-mean velocity potential. In this form of the equations, the atmospheric pressure is assumed
zero.

In deriving the above gB equations, it is assumed that σ = H/h and ε = h/λ, the nonlinearity and
dispersion terms, respectively, are small, where H is the wave height and λ the wavelength. Moreover, O(σ ) =
O(μ2) < 1,where μ = kh = 2πε.Hence, the gB equations are mostly applicable when the Ursell parameter,
Ur = σ/μ2, is of O(1). In the gB equations, the momentum equation (Eq. (8)) is obtained using a perturbation
method, and hence, the conservation of momentum is satisfied only approximately. The error is of order
(σε4, σ 2ε2), see Wu [77] for details.

Further details about the gB equations as applied to the problem of nonlinear wave interaction with vertical
cylinders can be found in Neill et al. [50].

2.3 The linear equations

We also use the linearized version of the GN and the gB equations in this study to assess the nonlinear effects.
The linearized equations are obtained by neglecting the nonlinear terms in the equations, after fully expanding
the material derivative terms. The linearized versions of the GN equations and the gB equations are identical
as shown by Ertekin [11]. Naghdi [48] earlier showed that the GN equations also reduce to a number of other
equations, including the one obtained originally by Boussinesq [4], when the equations are linearized.

In dimensionless form, after removing the nonlinear terms, the linearized version of the GN momentum
equation, Eq. (2), can be written as

ut + ζx = 1

3

(
uxxt + vxyt

)
. (9)

Similarly, substituting u = ∂φ/∂x and v = ∂φ/∂y in Eq. (8) and removing the nonlinear terms gives

ut + ζx = 1

3

(
uxxt + vxyt

) = 1

3

(
uxxt + uyyt

)
, (10)

as the order of mixed derivatives is interchangeable. Similar arguments can be made for the linear momentum
equation in the y direction. Therefore, the linearized forms of the gB and GN equations are the same, and in
dimensionless form, are given by

ζt + ∇ · V = 0, (11)

ut + ζx = 1

3

(
uxx + uyy

)
t = 1

3
�ut , (12)

vt + ζy = 1

3

(
vxx + vyy

)
t = 1

3
�vt . (13)
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3 Numerical modeling

The nonlinear GN and gB equations, and the linearized version of these equations, are solved numerically to
study the wave–structure interaction problem. In this section, we shall discuss the numerical modeling and
intorduce the numerical wave tank used to study the problem.

3.1 Initial and boundary conditions

The fluid is initially quiescent and at time t = 0, generation of the cnoidal waves at the upwave boundary
begins. The waves propagate in the positive x direction toward the open boundary. The seafloor, at the vicinity
of the cylinders, is flat and stationary. The top surface is free, with uniform atmospheric pressure distribution.
The seafloor no-flux boundary condition and the free surface kinematic and dynamic boundary conditions are
embedded in the derivations of the equations, and hence, they do not need to be considered here. The free
surface kinematic and dynamic boundary conditions are satisfied exactly by the GN equations and satisfied
approximately by the gB equations and the linear equations. Details on how these conditions are embedded in
the derivation of the equations can be found in Green and Naghdi [26] and Wu [77].

There are different types of cnoidal waves that are appropriate for nonlinear wave propagation in shallow
waters, see, for example, Wiegel [75] and Whitham [74]. In comparison with linear waves, cnoidal waves
have flatter troughs and peaked crests as a result of the nonlinearity. In some cases, semi-analytic and in other
cases numerical solutions of cnoidal equations can be obtained by writing the governing shallow-water wave
equation in Galilean coordinates and then solve the resulting ordinary differential equation by also imposing
the periodicity condition. In the infinite wavelength limit, a cnoidal wave becomes a solitary wave.

In the following sections, the wavemaker solutions used in solving the three different governing equations
employed in this work is introduced. In all periodic wave cases, however, it is necessary to modulate the waves
at the wavemaker and around the initial time so that unrealistic pressure loads are not imposed on the fluid. This
is because at time t = 0, the quiescent water condition is imposed throughout the domain and it is necessary
to modulate (or ramp) the waves initially. This is accomplished by defining the modulated surface elevation
by

ζM (x, y, t) = M(x, t)ζ(x, y, t), M(x, t) = 1 − exp

(
e

(
x

L
− t

T

))
, (14)

where e is the modulation parameter and L and T are the wavelength and wave period, respectively. Smaller
value of e corresponds to longer and stronger modulation of the wave front. In this work, e = 0.5 is used.
Velocity is determined by use of the exact conservation of mass equation, and hence, it is modulated directly
through the modulation of the surface elevation ζ.

3.2 Wavemaker solutions

3.2.1 GN cnoidal wavemaker

The cnoidal wave solution used as the wavemaker in the case of GN equations is provided by Sun [65] and
Ertekin andBecker [13] in a semi-closed formwhen thewater depth is constant at the vicinity of thewavemaker.
Let us define, x ′ = x − ct , where c is the phase speed of waves, i.e., the constant speed of the right-moving
coordinate. A periodic solution (dimensionless) to the GN equations for a wave of height H can be written in
the moving coordinate as

ζ(x ′) = ζ2 + HCn2, u(x ′) = c ζ(x ′)
1 + ζ(x ′)

, (15)

where the constant phase speed c is given by

c = √
(1 + ζ1) (1 + ζ2) (1 + ζ3), (16)

and

ζ1 = − H

k2
E

K
, ζ2 = H

k2

(
1 − k2 − E

K

)
, ζ3 = H

k2

(
1 − E

K

)
, (17)
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where k2 = H/(ζ3 − ζ1), and Cn is the Jacobian elliptic cosine function, and K and E are the complete elliptic
integrals of the first and second kind, respectively. The wavelength L can be calculated using the following
dispersion relation:

L = k K c

√
16

3 H
. (18)

Equations (15) and (18) are solved iteratively (see Ertekin and Becker [13]). We first assume a value for
k and then iterate Eq. (18) until we find its root at the nth iteration, k(n). The elliptic integrals are calculated
by a polynomial approximation as described by Ertekin et al. [19]. Within the accuracy of the numerical
calculations, the resultant waves satisfy the Level I GN equations exactly. Once the surface elevation, ζ , is
determined, the velocity can be calculated from the conservation of mass equation in the moving coordinates:
u = cζ/(1 + ζ ).

3.2.2 gB cnoidal wavemaker

Following Qian [56,57], the cnoidal wave solution of the gB equations is obtained numerically in the x − z
plane only (see also Teng and Wu [67]). By use of the definition of velocity potential, the layer-mean velocity
potential φ can be deduced from the gB equations, Eqs. (7) and (8). In dimensionless form, the resultant gB
equations read (see Ertekin et al. [18])

ζt + ∇ · {(1 + ζ ) V } = 0, (19)

u̇ = ut + uux + vuy + ζx = 1

3

(
uxx + uyy

)
t = 1

3
�ut , (20)

v̇ = vt + uvx + vvy + ζy = 1

3

(
vxx + vyy

)
t = 1

3
�vt , (21)

where � is the 2-D Laplacian on the horizontal plane. By combining the gB equations Eqs. (19), (20) into a
single nonlinear, ordinary differential equation in the moving (or wave) coordinate, x ′ = x − ct, where c is
the phase speed, we obtain

Cζ 2
x = 1

Fr2
(1 + ζ )4 ln(1 + ζ ) + D(1 + ζ )4 +

(
1

2
+ 1

Fr2

)
(1 + ζ )3 − C2(1 + ζ ), (22)

where Fr = c/
√
gh is the depth Froude number, and C and D are integration constants. The solution must

also satisfy the periodicity conditions:

ζ = AC , ζx ′ = 0, at x ′ = 0, (23)

ζ = −AT , ζx ′ = 0, at x ′ = L/2, (24)

where AC is the crest amplitude and AT is the trough amplitude of the cnoidal wave, and therefore, the wave
height is H = AC + AT , and L is the wavelength.

Equation (22) requires an iterative solution: Given Fr = L/T, where T is the wave period, and wave
height H, Ak

C is estimated, where k is the iteration counter, and Ak
T and C and D are calculated. Equation

(22) is then solved by the fourth-order Runge Kutta method and Ak+1
T is calculated at ζx ′ = 0 for x ′ = xL .

The iterations continue until the solution is converged within a specified tolerance, and the wavelength is then
determined by L = 2x ′

L .

3.2.3 Linear wavemaker

The long-wave solution used for the linear wave problem is the sinusoidal wave solution,

ζ = H

2
cos (kx − ωt), (25)

where k = 2π/L is the wave number and ω = 2π/T is the wave frequency. Unlike small-amplitude linear
waves, the shallow-water linear waves, as used here, do not follow the ω2 = ghk2 relation, and a specific
dispersion relation must be defined.
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To obtain the dispersion relation governing the 2-D linearized equations, Eqs. (11), (12), we substitute the
dimensional forms of Eq. (11) in (12) and set v = 0 (velocity in y direction) to obtain

h2

3
ζt t xx − ζt t + ghζxx = 0 . (26)

Substituting Eq. (25) in (26), results in

ω2 =
(

3ghk2

3 + k2h2

)
, c = ω

k
=

√
3gh

3 + k2h2
. (27)

The wave speed, c, therefore, is in contrast with the linear wave phase speed for long waves, c = √
gh, and

even with the two-term Taylor series expansion of it given by Mei [44], p. 30, as

c = ω

k
=

√
g

k
tanh kh =

√

gh

(
1 − k2h2

3

)
. (28)

Finally, substituting Eq. (25) (for v = 0) in Eq. (11) results in the horizontal component of the particle
velocity generated by the linear wavemaker as

u = Aω

kh
cos (kx − ωt). (29)

3.3 Open boundary

An absorbtion boundary is used on the downwave side of the numerical wave tank to eliminate, as much as
possible, the reflection of waves back into the domain. Potentially, this will alow minimizing the length of
the computational domain. For this, the values of surface elevation and velocities must be known at the open
boundary, the downwave end of the tank. However, due to the diffraction of the waves by the cylinders, there
is no a priori knowledge of these variables at the open boundary. Previous works of Wu and Wu [76] and
Ertekin [11] showed that the relatively simple Orlanski’s condition with constant phase speed c = ±√

gh can
be used to approximate the value of the variables and prevents significant reflections from the open boundary.
This open-boundary condition, used in this work, is given by

Ωt + cΩx = 0, (30)

where Ω may be ζ(x, t) or u(x, t) at the downwave boundary. The wave surface elevation is recorded and
monitored by numerical wave gauges throughout thewave tank. It is observed that the open-boundary condition
utilized here works well with negligible reflections.

3.4 Grid generation

To facilitate the use of finite-difference methods in solving the governing equations in a Cartesian coordinate
system, the physical domain, including the curved body boundaries, is mapped into a regular rectangular com-
putational domain. The transformation is carried out by use of an elliptic grid generation method, where there
is a one-to-one mapping between the physical and the computational domains; see, for example, Thompson
et al. [68].

Although there is one or more bodies (cylinders) in the physical region, the domain can be reduced to a
single, simply connected region by use of the symmetry of the problem. The axis of symmetry and cylinder
surface of the physical problem map to a single side of the transformed domain. An example of the physical
and transformed domains is shown in Fig. 2 for a single cylinder. Shown in this figure, the upwave boundary
is where the numerical wavemaker is located and the downwave boundary is the open, or absorbing, boundary
to prevent reflections as much as possible. On the symmetry, far wall and the cylinder boundaries, the normal
component of the fluid velocities must vanish but we allow the tangential component as the fluid is assumed
to be inviscid.

We note that with this grid generation approach, N number of vertical cylinders lined in a row parallel to
the incident wave can be considered. For offset distribution of vertical cylinders, a modification of the grid
generation approach is required, while the problem formulation remains the same. We only consider a row of
in-line vertical cylinders in this study.
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(a)

(b)

Fig. 2 a Physical domain and b computational domain for the single-cylinder case

3.4.1 Boundary-fitted coordinates and transformed equations

An elliptical grid generation technique is used to relate the physical coordinates x(ξ, η) and y(ξ, η) to the
curvilinear coordinates ξ(x, y) and η(x, y). For each node, x(i, j) and y(i, j), in the physical domain, there
is a corresponding point, ξ(i, j) and η(i, j), in the computational domain. The governing equations for the
elliptical generation system are found through the minimization of the Euler integral:

I =
∫ (|∇ξ |2 + |∇η|2) dA. (31)

This leads to the elliptical equations
∇ξ2 = 0,∇η2 = 0. (32)

These equations are the governing equations for the elliptical grid transformation and ensure a one-to-one
transformation between the physical and the computational domains since the determinant of the Jacobian is
required not to vanish. The curvilinear coordinates ξ(x, y) and η(x, y) must be determined inside the physical
region.

To solve Eq. (32) on the transformed domain, the derivatives in terms of x and y must be transformed
into derivatives in terms of ξ and η. This is accomplished by the repeated application of the chain rule of
differentiation, i.e., ∂ f

∂x = ∂ f
∂ξ

∂ξ
∂x + ∂ f

∂η
∂η
∂x , and similarly for ∂ f/∂y, where f is a generic function. This results

in the following equations:

αxξξ − 2βxξη + γ xηη = 0, (33)

αyξξ − 2βyξη + γ yηη = 0, (34)
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where

α = x2η + y2η, β = xξ xη + yξ yη, γ = x2ξ + y2ξ . (35)

For details of the derivation of Eqs. (33) and (34), see, for example, Thompson et al. [69].
Equations (33) and (34) provide the location of each node in the physical region corresponding to a node in

the computational region. The transformed Eqs. (33) and (34), are solved iteratively using a finite-difference
technique.

The derivatives in terms of x and y are then expressed in terms of ξ and η. Some of these relationships are
listed below:

fx = 1

J

(
yη fξ − yξ fη

)
, (36)

fy = 1

J

(−xη fξ − xξ fη
)
, (37)

∇2 f = 1

J 2
(
α fξξ − 2β fξη + γ fηη

)
, (38)

where f is a generic variable and J is the Jacobian of the transformation, i.e.,

J = xξ yη − xηyξ . (39)

The transformation of the governing equations is explained in greater detail in Qian [56].

3.4.2 Grid orthogonality

The accuracy of a numerical model is significantly influenced by the orthogonality of the grid lines to the
boundary. As the grid lines become less orthogonal, generally the numerical solution becomes less accurate.
This inaccuracy can also lead to instability. To minimize this problem, we use grid attraction to maximize
orthogonality by rather using the Poisson equation (see also, Thompson et al. [69]):

�ξ = P(ξ, η), �η = Q(ξ, η), (40)

where P and Q are control functions which determine the amount of grid attraction at each point and � is the
2-D Laplacian. For positive values of P and Q, the lines of constant ξ and η are attracted; negative values repel
these lines. Following the recommendation of Thompson et al. [68], P and Q are chosen to be exponential
functions of the following form:

P(ξ, η) = −
n∑

j=1

āsgn(ξ − ξi ) exp
−b|ξ−ξi |,

Q(ξ, η) = −
n∑

j=1

c̄sgn(η − ηi ) exp
−d|η−ηi |,

(41)

where ā and c̄ are the line attraction coefficients, b and d are the decay coefficients, and sgn is the sign of the
difference in parentheses. This allows either line attraction or repulsion in either the ξ or η direction.

After transforming the derivatives from the physical (x, y) plane to the computational (ξ, η) plane by the
repeated application of the chain rule of differentiation, Eq. (40) become

αxξξ − 2βxξη + γ xηη + J 2(P xξ + Q xη) = 0,

αyξξ − 2βyξη + γ yηη + J 2(P yξ + Q yη) = 0,
(42)

where J = xξ yη − xηyξ is the Jacobian of the transformation that should not vanish in the domain, and α, β
and γ are defined by Eq. (35).
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3.4.3 Stagnation points

The stagnation points are located where the line of symmetry bisects the cylinders. These locations are the
most upwave and downwave locations on each cylinder; the points B and C in Fig. 2. The use of numerical
grid generation requires that the grid lines be approximately orthogonal along the boundaries. Since there are
90◦ bends at these points, the incident angle is undefined and the grid lines cannot be orthogonal. If the same
transformation techniques used throughout the region are applied here, erroneous results would be produced.

By definition, the velocities are zero at the stagnation points. For the problem to be symmetric, the flow
through the line of symmetry, in the y direction, must be zero. Therefore, the y-component of velocity, v,
at the stagnation points must be zero. On the surface of each fixed cylinder, the no-flux boundary condition
requires the normal velocity to be zero also. At the stagnation points, this requires that the x-component, u, be
equal to zero. By setting both velocities equal to zero at the stagnation points, the analysis can be significantly
simplified. The surface elevation, however, must still be analyzed at these stagnation points.

At the stagnation point locations, the governing equations can be solved for the surface elevation without
transforming into the computational domain. This boundary corresponds to the j = 1 line or constant η = 0
line. At point B, the line initially lies along the x axis and then, after the 90◦ turn, lies approximately along
the y axis. Along this boundary line, the grid points are evenly spaced. This line is used to create a Cartesian
coordinate system, with an origin at the stagnation point. At each stagnation point, the x−y physical coordinate
system is used. Conventional finite-difference formulas are appliedwithout the transformation of the derivatives
to the computational plane. The stagnation points are analyzed in the physical plane, while the rest of the region
is analyzed in the computational plan. This method is also recommended by Thompson et al. [69].

3.5 Numerical solution

Second-order central difference schemes are used to solve the governing equations in the spatial domain.
Fictitious points are used at the domain boundaries to carry out the spatial derivation, see Roddier [58] and
Roddier and Ertekin [59] for details. The second-order, modified Euler method is used for time marching.
This two-step method has been used successfully by Ertekin [11] and Hayatdavoodi and Ertekin [32], among
others, in similar problems.

The successive over-relaxation method (SOR) is used to iteratively solve Eq. (40). The rate of convergence
of the iterations is determined through the acceleration parameter following the method described by Burden
and Faires [5]. Solving Eq. (40) by the SOR method yields a solution for each point in the physical domain
x(i, j) and y(i, j), where i, j are the nodal points, with a corresponding point in the computational domain,
ξ(i, j) and η(i, j). Therefore, initial guesses for x(i, j) and y(i, j) are required. We used a weighted average
of the boundary points for the initial guesses as suggested by Thompson et al. [68] and used by Qian [56] and
Ertekin et al. [18].

The Courant condition is satisfied in the numerical solution of the equations considered here as Von
Neumann stability analysis done on the linear equations dictate that �t < �x or �y.

It is observed that the results may experience saw-teeth noise, mainly due to the use of the central difference
scheme. This is not physical and alsomay cause instability in the numerical solution. Hence, numerical filtering
of the result is necessary. Shown by Ertekin et al. [17] for similar problems as that studied here, a combination
of the five- (second-order) and seven-point (third-order) linear filtering schemes, developed by Shapiro [63],
would ensure stability, while not altering the shape of the incident wave or the results. This includes the use of
a third-order filtering in the direction normal to the prevailing wave crests, the ξ direction, and a second-order
filtering parallel to the wave crests, the η direction. These filtering schemes read as

f j = 1

16

(− f j−2 + 4 f j−1 + 10 f j + 4 f j+1 − f j−2
)
, (43)

fi = 1

64
(− fi−3 − 6 fi−2 + 15 fi−1 + 44 fi + 15 fi+1 − 6 fi+2 + fi+3) , (44)

where f is a generic variable that can represent ζ, u or v.
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3.6 Error monitoring

The conservation of mass is monitored in the domain to ensure that the computations, and the open-boundary
condition does not violate the law. The change in total mass, δM , inside the physical domain is monitored by:

δM(t)

ρh3
=

∫

AC

(1 + ζ ) dA +
∫ t

0

(∫

UW
(1 + ζ )u dy −

∫

DW
(1 + ζ )u dy

)
dt ′ − AC

h2
, (45)

where AC denotes the dimensional area of the computational domain in the horizontal plane andUW and DW
represent the open boundaries on the upwave and downwave sides. The highest relative percentage change in
mass determined in this study was less than 0.13%. Example error calculations and further discussion on the
error monitoring of the numerical model used in this study can be found in Neill [49] and Neill et al. [50].

3.7 Force and moment calculations

3.7.1 The Green–Naghdi equations

Closed-form equations for the pressure on the bottom surface of the fluid sheet ( p̄, Eq. (6)) and the integrated
pressure (PI , Eq. (5)) of the GN equations were first presented by Ertekin [11]. Thewave-induced force on each
cylinder can be determined by integrating the instantaneous integrated pressure, Eq. (5), around the cylinder.

In deriving theGNequations, however, the conservation ofmomentum and directormomentum are satisfied
in an averaged sense, and information about pressure distribution at every point of space is lost. In this study,
the assumption made by Neill et al. [50] for pressure distribution over the water column is followed, i.e., that
the pressure varies linearly from the free surface to the seafloor. Hence,

P(x, y, z, t) = 1

2
(ζ − z)

(
ζ̈ + 2

)
, (46)

is the expression for pressure at any point in the space.
The overturning moment (about the y axis) on the cylinder can then be obtained by multiplying Eq. (46)

by the moment arm (with respect to the seafloor) and integrating over the circumference of the cylinder. The
GN moment on a vertical cylinder can be obtained by

MI (x, y, t) =
∫ ζ

−1
(1 + z) P(z) dz = 1

12
(1 + ζ )3

(
ζ̈ + 2

)
. (47)

The error associated with the assumption of linear pressure distribution in the vertical direction can be
measured; see Neill et al. [50] for details. In this study, the maximum error, for cnoidal wave diffraction by
vertical cylinders, is 0.29%. This is a small and reasonable error. In Sect. 5, further discussion on the pressure
distribution over the water column by the GN equations will be provided.

3.7.2 The gB equations

The gB pressure distribution over the vertical direction in dimensionless form is given by (Wu [77])

P(x, y, z, t) = ζ − z +
(
z + 1

2
z2

)
∇ · V t . (48)

The force on the vertical cylinder can be found by integrating Eq. (48) in the vertical direction, i.e.,

PI = 1

2
(1 + ζ )2 + 1

6
(1 + ζ )

(
ζ 2 + 2(ζ − 1)

)∇ · V . (49)

Similarly, the moment about the y axis can be found by multiplying Eq. (48) by the moment arm (with
respect to the seafloor) and integrating it over the water column. The gB moment on a vertical cylinder can be
obtained by

MI = 1

6
(1 + ζ )3 + 1

8
(1 + ζ )2

(
(1 + ζ )2 − 2

)∇ · V t . (50)
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3.7.3 Linear equations

The depth-integrated pressure equation can be found by linearizing either the depth-integrated gB pres-
sure equation, Eq. (49), or the GN integrated pressure equation, Eq. (5). Note that ζ̈ = (h +
ζ )

(
(ux + vy)

2 − (
uxt + vyt

) − u(uxx + vxy) − v(uxy + vyy)
)
becomes ζ̈ = −h(uxt + vyt ) when linearized,

and hence, the linear pressure distribution reads

PI = 1

2
+ ζ − 1

3
∇ · V t , (51)

which is identical for the GN and the gB equations.
Since the moment equation used for the GN equations is an approximation, the linearized gB moment

equation is used to determine the overturning moment,

MI = 1

6
+ 1

2
ζ − 1

8
∇ · V t . (52)

The integrated pressure and moment, PI and MI , are numerically integrated around the circumference of
the cylinder to determine the horizontal force and the overturning moment.

4 Numerical wave tank setup

Unless otherwise stated, the cylinder diameter is D = 4.0h in this study. This cylinder diameter is large enough
to produce significant diffraction, while allows for reasonable numerical computations. Smaller cylinders
would require finer grids for the same accuracy and viscous forces may become important. A larger diameter
cylinder would require a larger domain. Clearly, the latter two factors would increase the computational time
significantly.While the primary wave height is H = 0.2h, various wavelength and wave heights are considered
to study the effect of nonlinearity and dispersion on cylinders in shallow waters.

The domain used includes a 20h distance from the upwave boundary to the first cylinder surface, a 20h
distance from the last cylinder surface to the downwave boundary and a 20h distance from the far wall to the
symmetry axis. It will be shown later that this domain is large enough to avoid problems of wave interactions
at the boundaries that affect the resulting forces and moments on the cylinders.

Results are presented in dimensionless form.Unless stated otherwise, the following dimensionless variables
are used in this study by selecting (ρ, g, h) as a dimensionally independent set:

t̄ = t

h

√
gh, F̄ = F

ρgh2R
, M̄ = M

ρgh3R
, P̄ = P

ρgh
, (53)

where the bars represent the dimensionless quantities, ρ is the mass density, F is the horizontal force on the
cylinder, M is the overturning moment with respect to the sea floor, P is the pressure, and R is the cylinder
radius. Any quantity whose dimension is length is scaled by water depth h. When comparing the results with
the available laboratory measurements, a different dimensionless form of the force and moment is utilized;
this will be discussed later.

The nominal (dimensionless) grid sizes used in this domain are�x = 0.25 and�y = 0.33. These sizes are
small enough to adequately model the surface displacements and large enough to not require excessive CPU
(central processing unit) time. To insure stability, the time step must be smaller than the grid size as discussed
before. Therefore, the time step is chosen as �t = 0.2. Results of a grid convergence study, examining three
different grids, namely Grid I, Grid II and Grid III configurations, are shown in Fig. 3. Table 1 shows the
dimensionless spatial and time discretization used in these three configurations.

5 Results and discussion

In this section, results of the GN equations, gB equations and the linearized equations for cnoidal wave interac-
tion with vertical cylinders are presented. First, cnoidal wave diffraction by a single cylinder is considered, and
results are compared with other theories and available laboratory measurements. This is followed by cnoidal
wave diffraction by multiple, in-line vertical cylinders, where comparison between the different equations
is also presented. Namely, results are presented for two and three cylinders lined up in a row. All vertical
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Fig. 3 Grid convergence study, H = 0.2h, L = 10h, D = 4h. The grid information is given in Table 1

Table 1 Grid characteristic used for the grid convergence study

Grid ID �x �y �t

Grid I 0.20 0.28 0.16
Grid II 0.25 0.33 0.2
Grid III 0.3 0.4 0.24

cylinders have the same diameters. The spacing between the cylinders, S, is the same and defined in terms of
some product of the diameter of the cylinders, S = αD, as the distance between the two closest points on the
cylinders. In some other works, see, e.g., Wang and Jiang [70], the spacing is defined as the distance between
the axes (center to center) of the cylinders, and therefore, our definition of spacing needs to be modified by
adding the cylinder diameter D = R/2 to it when one compares with results by others.

5.1 Single vertical cylinder

Several difficulties exist in using the existing experimental data to verify the cnoidal wave forces.Most periodic
wave experiments use small-diameter cylinders and short waves that are sinusoidal. This is generally done to
obtain the inertia and drag coefficients to be used in a Morison-type analysis of wave forces. This study is
primarily interested in large diameter cylinders, long waves and nonlinear cnoidal waves. Because of lack of
other data for the conditions considered here, we choose the experimental studies of Chakrabarti and Tam [7]
andChakrabarti [6] for comparison. In these studies, experiments were conducted on a 1.72h diameter cylinder.
Although this cylinder is less than one half the diameter used as the standard in our study (4.0h), it is still
much larger than the cylinders used in most studies, and it is large enough to provide a qualitative comparison.

In the experiments of Chakrabarti and Tam [7] and Chakrabarti [6], sinusoidal waves were used. Since
sinusoidal waves are symmetric about the still-water level, the maximum wave force, FMAX, and minimum
wave force, FMIN, produced by sinusoidal waves are nearly equal in magnitude in experiments. Cnoidal
waves are not symmetric about the still-water level and do not, in general, produce maximum and minimum
wave forces of nearly equal magnitude unless the wave height is very small. Hence, in this study we define the
equivalent wave force, FEQ, so that the cnoidal wave forces can be compared to the maximum force amplitude,
FAMP, used in Chakrabarti and Tam [7] and Chakrabarti [6]. This procedure removes most of the effect that
the non-symmetry of the cnoidal waves has on the resulting forces. The equivalent force is defined here as the
average of the magnitudes of the maximum and minimum cnoidal wave forces, i.e.,

FEQ = 1

2
(|FMAX| + |FMIN|) . (54)
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Fig. 4 Solitary and cnoidal wave forces and moments on a single cylinder calculated by the Boussinesq equations, D =
1.72h, H = 0.2h

The maximum force amplitude, FAMP, is then taken as the greater of the two values, the magnitude of
maximumwave force, FMAX, or the magnitude of the minimum force, FMIN, i.e., FAMP = |F |MAX.Although
the equivalent force of the cnoidal wave solutions is compared to the maximum amplitude solution for the
sinusoidal wave, the comparison of the forces directly would not have significantly altered the outcome. All the
statements made above, in reference to the wave forces, also apply equally well to the wave-induced moments.

Five different wavelengths, L = 5.42h, 6.28h, 7.22h, 10.83h, and 15.48h, are used in this comparison
of the numerical solutions with the experimental data. The distances from the upwave boundary to the cylinder,
from the cylinder to the downwave boundary and from the symmetry boundary to the far wall were all 20h.
Solitary waves also are used, and they correspond to kh → 0. See Neill et al. [50] for details on solution of
solitary wave impact on vertical cylinders by the GN and gB equations.

The wavelengths were chosen to determine the applicability of the wavelength range for both the gB
and GN equations. The 6.28h wavelength corresponds to μ2 = 1, where μ = kh = 2πε, and ε = h/L ,
defined in Sect. 2.2. Recall that the gB equations are valid for O(μ2) < 1. Although the GN equations do
not have an explicit limit, they must, nevertheless, have similar implicit limitations. Any such limitations of
the GN equations must be judged by comparison with experiments. Shields and Webster [64] investigated the
applicable range for modeling a two-dimensional wave using the Level I equations used here. They determined
that the Level I GN equations are appropriate for wavelengths greater than approximately 7.0h, see also Zhao
et al. [84,85]. The wave height of 0.2h is chosen because this wave height was used by Chakrabarti [6]. It is
believed to be large enough to produce some nonlinearity.

The present force and moment results numerically determined for this configuration are shown in Fig. 4
for the gB equations and in Fig. 5 for the GN equations for the cylinder diameter of D = 2R = 1.72h. These
figures also show the solitary wave limit (L → ∞) of the cnoidal wave diffraction. The forces are compared
to the experimental data of Chakrabarti and Tam [7] and to the linear solutions in Fig. 6. These linear solutions
are based on the diffraction theory of MacCamy and Fuchs [41], which is for a finite water depth but without
the shallow-water approximation.

In Fig. 6, FMAX refers to either FAMP or FEQ. In this figure, only, the force and moment are dimensionless
in the form given by Chakrabarti and Tam [7] and Chakrabarti [6], which is different from the normalizations
used throughout this study. The normalizations used in Fig. 6 are

F̄ = 2.0 F

ρgR2H
, M̄ = 2.0M

ρgR3H
, (55)

where F and M are the dimensional force and overturning moment, respectively. The forces and moments are
normalized by the wave height and therefore, one may compare waves of several different wave heights since
the experimental forces varied linearly with wave height. However, note that nonlinear forces/moments do not
necessarily vary linearly with wave height, or even with its square in some cases; we use this normalization
for the purpose of comparison with experiments. Chakrabarti and Tam [7] used waves that varied in heights



M. Hayatdavoodi et al.

Fig. 5 Solitary and cnoidal wave forces and moments on a single cylinder calculated by the GN equations, D = 1.72h, H = 0.2h
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Fig. 6 Comparison of variation of maximum force and moment with kR
(= 2πR

L

)
and μ2

(= (kh)2
)
, of experiments of

Chakrabarti [6] and Chakrabarti and Tam [7] vs computations of the GN and the Boussinesq equations, and the linear the-
ory solution of MacCamy and Fuchs [41], for the single-cylinder case, D = 1.72h, H = 0.2h. Note that forces and moments are
nondimensionalized using Eq. (55)

from 0.08h to 0.21h. In a later study, Chakrabarti [6] used waves only with wave heights near 0.20h. To be
consistent with these works, the wave forces are plotted versus kR, the wave number multiplied by the cylinder
radius. As before, all the statements referring to the forces are also applicable to the moments.

Figure 6 shows a very good correlation for the longer wavelength periodic waves between the GN solu-
tion and the existing experimental data for both the force and moment. For the shorter wavelengths, the
linear solution accurately predicts the force and moment, see Huseby and Grue [34] for further discussion on
the agreement of the linear solution with laboratory experiments. The linear solution predicts that the force
approaches zero as the wavelength approaches infinity (kR → 0), whereas nonlinear solutions predict the
soliton force which is nonzero. (Both the GN and gB solitary wave force and moment limits are shown in
Fig. 6.) For the shorter wavelengths, between μ2 = 0.336 and 1.0, the gB equations appear to not accurately
predict either the wave force or moment. An exception is when the gB predictions cross the linear curve and
the solutions must agree. For these shorter wavelengths, the gB equations underpredict the dynamic force and
moment. This causes the gB equations to predict forces and moments that are less than the linear solutions for
these shorter wavelengths. For longer wavelengths, μ2 < 0.336, the gB equations are in general agreement
with the GN equations.
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(a) (b)

Fig. 7 Variation of force with domain length for a the Boussinesq and b the Green–Naghdi equations, L = 9.0h, H = 0.2h, D =
4.0h

Next, we shall study the problem of cnoidal wave interaction with a single cylinder by use of the different
equations developed here. Note that hereafter, variables are given in dimensionless form as shown by Eq. (53).
Also, the standard numerical setup, discussed in Sect. 4, is used.

For cnoidal waves, it is necessary to verify that the domain size is adequate. After the waves diffract from
the cylinder, some of the waves reflect off of the far wall, the upwave boundary and the downwave boundary,
and then move back toward the cylinder. This can potentially cause significant errors in the analysis. The larger
the domain size is, the longer it takes for the reflected waves to return to the cylinder, and therefore, the less
effect these reflections would have on the results. To verify that the standard domain size is sufficiently large,
a longer distance (40h) from the wavemaker to the cylinder is also considered in addition to the standard
distance (20h). Both the 9.0h and the 11.0h wavelength cases are considered. As shown in Fig. 7, except for
the time phase shift (which is expected as it takes longer for the waves to arrive at the cylinder), the forces are
nearly identical for the two different domain lengths and for both equations. A similar result was obtained for
the longer wavelength case of 11.0h.

For the linear case, the standard 4.0h diameter cylinder and 0.2h wave height is used. Both the 9.0h and the
11.0h wavelength sinusoidal waves are investigated. For the 9.0h wavelength case, the wave heights of 0.1h
and 0.3h are also included. For the 9.0h wavelength and 0.2h wave height case, shown in Fig. 8, substantial
increase in the forces and moments for both the GN and gB equations is observed. The maximum force (0.42)
from the gB case is 14% larger than the linear case (0.37). The maximum force (0.48) for the GN case is 30%
larger than the linear case (0.37). The maximum moments for the gB case (0.24) and the GN case (0.25) are
26 and 32% larger, respectively, than the linear case (0.19).

The 11.0h wavelength also showed substantially larger forces and moments for both the GN and gB
equations, compared with the linear case. These forces and moments are shown in Fig. 9. The maximum force
(0.46) from the gB case is 18% larger than the linear case (0.39). The maximum force (0.54) for the GN case
is 38% larger than the linear case (0.39). The maximum moments for the gB case (0.23) and the GN case
(0.27) are 21 and 42% larger than the linear case (0.19), respectively.

The nonlinear wave solutions produce larger forces andmoments primarily because of the greater run-up of
the surface elevation on the side of the cylinder. This is partially caused by the lack of symmetry of the incident
surface elevation about the still-water level for the nonlinear waves. Unlike the linear waves, the nonlinear
waves havemaximum surface elevation greater than one half the wave height. The greater run-up is also caused
by the increase in the interaction between the waves and the cylinder. To demonstrate the effect of nonlinearity
on the force and the moment, the wave heights of 0.1h, 0.3h, 0.4h, and 0.5h are also included for the 9.0h
wavelength case. These forces and moments, shown in Figs. 10, 11, 12, and 13, respectively, demonstrate that
as the wave height is increased, the difference in the results from the linear and nonlinear equations increase.
This is partially a result of the increase in non-symmetry of the surface elevation. Figure 14 shows the sample
surface elevations for the gB and GN equations for the large cylinder case.

The pressure as a function of the vertical coordinate, z, for both the GN equations and the gB equations
is shown in Fig. 15 for comparison purposes. This is the total pressure under the wave crest, for a freely
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Fig. 8 Comparison between the forces and moments of the Boussinesq and the Green–Naghdi cnoidal waves, and linear waves,
L = 9.0h, H = 0.2h, D = 4.0h

Fig. 9 Comparison between the forces and moments of the Boussinesq and the Green–Naghdi cnoidal waves, and linear waves,
L = 11.0h, H = 0.2h, D = 4.0h

Fig. 10 Comparison between the forces and moments of the Boussinesq and the Green–Naghdi cnoidal waves, and linear waves,
L = 9.0h, H = 0.1h, D = 4.0h
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Fig. 11 Comparison between the forces and moments of the Boussinesq and the Green–Naghdi cnoidal waves, and linear waves,
L = 9.0h, H = 0.3h, D = 4.0h

Fig. 12 Comparison between the forces and moments of the Boussinesq and the Green–Naghdi cnoidal waves, and linear waves,
L = 9.0h, H = 0.4h, D = 4.0h

Fig. 13 Comparison between the forces and moments of the Boussinesq and the Green–Naghdi cnoidal waves, and linear waves,
L = 9.0h, H = 0.5h, D = 4.0h
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Fig. 14 3-D snapshots of cnoidal wave surface elevation around a cylinders, calculated by the Boussinesq and GN equations,
L = 9.0h, D = 4.0h, and H = 0.2h
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Fig. 15 Variation of dimensionless pressure (total) with the vertical coordinate under cnoidal wave crest, in the absence of any
cylinder, for both the Boussinesq and the GN equations, L = 9.0h, H = 0.4h

propagating wave, unaffected by diffraction. The wavelength and height used are 9.0h and 0.2h, respectively.
The pressure distribution for the gB equations is determined through Eq. (48), and the pressure distribution
for the GN equations is determined through Eq. (46). Figure 15 demonstrates that the pressure distribution
predicted by the gB and GN equations is nearly linear with depth. This supports the assumption of a linear
pressure distribution used for the GN equations. Note, however, that the total pressure is not hydrostatic as
expected.

As we have seen, nonlinearity can significantly increase the forces and moments, relative to the linear case.
Figure 16 demonstrates this for the case of 9.0h wavelength and D = 4.0h as a function of the dimensionless
wave height H. The GN equations predict the highest wave forces among the three models, and unless the
wave height is about 0.05h or less, the linear theory should not be used at this wavelength or longer.

5.2 Two vertical cylinders

The two-cylinder cnoidal wave case uses the same D = 4.0h diameter cylinder used before. Five different
spacings are used: 0.5D, 0.75D, 1.00D, 2.00D, and 3.00D. For the 9.0h-long wave, the spacing of 1.25D =
5.0h is also included to study the case of two in-line cylinders with the cylinder center-to-center distance equal
to the wavelength. The cnoidal wavelengths are the same 9.0h and 11.0h as used before, as well as the wave
height of 0.2h.



Diffraction of cnoidal waves

Wave Height (H/h)
0 0.1 0.2 0.3 0.4 0.5

M
ax

im
um

 F
or

ce

0

0.5

1

1.5

Boussinesq
GN
Linear

Fig. 16 Maximum cnoidal wave forces on the cylinder (single-cylinder case), versus wave height, L = 9.0h and D = 4.0h

Fig. 17 3-D snapshots of cnoidal wave surface elevation around two cylinders, calculated by the GN equations, S = 1.0D, L =
9.0h, D = 4.0h, and H = 0.2h

For the L = 9.0h wavelength, the resulting forces and moments of the gB equations are shown in Figs. 18
and 19, respectively. The resulting forces and moments of the GN equations for this case are shown in Figs. 20
and 21, respectively, with a sample snapshot of the surface elevation shown in Fig. 17. For the 9.0h wavelength,
the gB equations show significant interaction between the cylinders, see Fig. 18. They demonstrate that the
forces on the first cylinder could either be increased (maximum 26% increase at S = 1.0D) or decreased
(maximum 12% decrease at S = 0.5D) by the presence of the second cylinder, in comparison with the single-
cylinder case. The force on the second cylinder is decreased (maximum 28% decrease at S = 0.5D, minimum
decrease 3.8% at S = 1.0D) by the presence of the first cylinder.

The GN equations show similar interaction between the cylinders for the 9.0h wavelength case, see Fig.
20. Forces on the first cylinder could either increase (max 28% increase at S = 1.0D) or decrease (max 15%
decrease at S = 0.5D). The force on the second cylinder is decreased (maximum 35% decrease at S = 0.5D,
minimum decrease 4% at S = 2.0D) by the presence of the first cylinder. For the GN case, the maximum
force is predicted at the S = 1.0D spacing. For the gB case the maximum force is predicted at a spacing of
S = 1.25D (not shown here but will be discussed later). This difference is caused by a difference in dispersion.
The velocity of the waves is affected differently by the wave height for the two cases. Therefore, the incident
and the reflected waves combine differently and produce maximum forces at different spacings. In both the
gB and GN cases, and for the 9.0h-long wave, the force on the first cylinder either increases or decreases
because of the presence of the second cylinder, see Figs. 18 and 20. The force on the second cylinder in general
decreases, relative to the force on the first cylinder, by the presence of the first cylinder.
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(a) (b)

Fig. 18 Cnoidal wave force on single and two cylinders on the a first and b second cylinder, calculate by the Boussinesq equations,
L = 9.0h, H = 0.2h, D = 4.0h

(a) (b)

Fig. 19 Cnoidal wave moment on single and two cylinders on the a first and b second cylinder, calculate by the Boussinesq
equations, L = 9.0h, H = 0.2h, D = 4.0h

(a) (b)

Fig. 20 Cnoidal wave force on single and two cylinders on the a first and b second cylinder, calculate by the GN equations,
L = 9.0h, H = 0.2h, D = 4.0h
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(a) (b)

Fig. 21 Cnoidal wave moment on single and two cylinders on the a first and b second cylinder, calculate by the GN equations,
L = 9.0h, H = 0.2h, D = 4.0h

(a) (b)

Fig. 22 Cnoidal wave force on single and two cylinders on the a first and b second cylinder, calculate by the Boussinesq equations,
L = 11.0h, H = 0.2h, D = 4.0h

In the 11.0h wavelength case, the gB equations show significant interaction between the cylinders, see Fig.
22. The forces on the first cylinder could either increase (max 2% increase at S = 3.0D) or decrease (max
19% decrease at S = 0.75D). The force on the second cylinder could also either increase (max 7% increase
at S = 3.0D) or decrease (max decrease 28% at S = 0.5D). This is the only case, among the two-cylinder
cases, where the force on the second cylinder is increased by the presence of the first cylinder, relative to the
single-cylinder case.

The GN equations also show significant interaction similar to the gB equations for the 11.0h wavelength
case, see Fig. 10. The forces on the first cylinder could either be increased (max 14% increase at S = 1.0D)
or decreased (max 20% decrease at S = 0.5D) by the presence of the second cylinder. Unlike in the case of
the gB equations, however, the force on the second cylinder is only decreased (maximum 24% decrease at
S = 0.5D, minimum decrease 4% at S = 3.0D) by the presence of the first cylinder. This difference between
the GN and the gB cases is also caused by the greater run-up from the gB case which causes greater wave
reflections and therefore stronger interference effects. For the 11.0h-long wave, the force on the first cylinder
can either be increased or decreased by the presence of the second cylinder, see Figs. 22 and 23. The two
equations do not agree on whether the force on the second cylinder could be increased by the presence of the
first cylinder.
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(a) (b)

Fig. 23 Cnoidal wave forces on single and two cylinders on the a first and b second cylinder, calculate by the GN equations,
L = 11.0h, H = 0.2h, D = 4.0h

Fig. 24 3-D snapshots of cnoidal wave surface elevation around three cylinders, calculated by the Boussinesq equations, S =
1.0D, L = 9.0h, D = 4.0h, and H = 0.2h

The effect of a second cylinder on the resulting moment is very similar to the effect on the forces, see,
e.g., Figs. 19 and 21. All the interactions described above also apply to the moment. The values, however, are
slightly different.

5.3 Three vertical cylinders

For the three-cylinder case, the resulting forces and moments on the first, second, and third cylinders for the
9.0h wavelength gB case are shown in Figs. 25, 26, and 27. A sample surface elevation snapshot for this case
is shown in Fig. 24. The resulting forces and moments for the 9.0h wavelength GN case are shown in Figs.
28, 29, and 30.

The effects of the third cylinder on the first cylinder are moderate, see Figs. 25 and 28, and this is expected.
The effect of the third cylinder on the first cylinder is to moderately amplify the effects of the two-cylinder
case. The lowest force values are slightly lower, and the highest force values are slightly higher on the first
cylinder in the three-cylinder case than on the first cylinder in the two-cylinder case. The forces on the first
cylinder, in the three-cylinder case, behave similarly to the forces on the first cylinder in the two-cylinder case.

The effect of the third cylinder on the second cylinder is also to amplify the effects of the two-cylinder
cases, see Figs. 26 and 29. This amplification is significantly greater for the second cylinder than for the first
cylinder. For both equations and both wavelengths, the force on the second cylinder in the three-cylinder case
has greater extremes than the force on the second cylinder in the two-cylinder case. The trend of the forces
on the third cylinder, in the three-cylinder case, is similar to the second cylinder in the two-cylinder case, see
Figs. 27 and 30. The forces, however, are generally less.
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Fig. 25 Cnoidal wave forces and moments on the first cylinder of the three-cylinder case, calculated by the Boussinesq equations,
L = 9.0h, H = 0.2h, D = 4.0h

Fig. 26 Cnoidal wave forces and moments on the second cylinder of the three-cylinder case, calculated by the Boussinesq
equations, L = 9.0h, H = 0.2h, D = 4.0h

Fig. 27 Cnoidal wave forces andmoments on the third cylinder of the three-cylinder case, calculated by the Boussinesq equations,
L = 9.0h, H = 0.2h, D = 4.0h
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Fig. 28 Cnoidal wave forces and moments on the first cylinder of the three-cylinder case, calculated by the GN equations,
L = 9.0h, H = 0.2h, D = 4.0h

Fig. 29 Cnoidal wave forces and moments on the second cylinder of the three-cylinder case, calculated by the GN equations,
L = 9.0h, H = 0.2h, D = 4.0h

Fig. 30 Cnoidal wave forces and moments on the third cylinder of the three-cylinder case, calculated by the GN equations,
L = 9.0h, H = 0.2h, D = 4.0h
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Fig. 31 Cnoidal wave maximum forces on the first cylinder, for one-, two-, and three-cylinder cases, versus cylinder spacing,
H = 0.2h and D = 4.0h. Wavelength L = 9.0h in the left sub-figure, and L = 11.0h in the right sub-figure
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Fig. 32 Cnoidal wave maximum forces on the second cylinder, for one-, two-, and three-cylinder cases, versus cylinder spacing,
H = 0.2h and D = 4.0h. Wavelength L = 9.0h in the left sub-figure, and L = 11.0h in the right sub-figure

The effect of a third cylinder on the resulting moment is very similar to the effect on the forces, see Figs.
25, 26, 27, 28, 29, and 30. Similar to the two-cylinder case, all the interactions described above also apply to
the moment. The values, however, are slightly different.

6 Further discussion on the wave forces

The cnoidal wave forces for both the two-cylinder and three-cylinder cases are shown in Figs. 31, 32, and 33.
The interaction from cnoidal waves on multiple cylinders is much more complex than the interactions from
the solitary waves. The forces on each cylinder can be increased or decreased by the influence of neighboring
cylinders.

For the 9.0h-wavelength case, the forces on the first and second cylinder increases for the spacings near
1.25D (5.0h), see Figs. 31, 32, and 33. This spacing is nearly one half the wavelength (9.0h). The cylinder
center-to-center distance for this configuration, however, is equal to the wavelength. Apparently, the reflections
from the downwave cylinder meet the upwave side of the upwave cylinder at the same time as the next wave.
The waves interfere constructively, and the force on the first cylinder is increased. The wave reflected from
the downwave cylinder also reflects off of the downwave side of the upwave cylinder and back toward the
downwave cylinder. The reflected wave and the next incoming wave combine and encounter the downwave
cylinder at the same instant. This also increases the force on the downwave cylinder. This effect, described
above, occurs in the results of both equations and in both the two- and three-cylinder cases. These results
are in agreement with the study of Maniar and Newman [43], who found that near-resonant modes can occur
between adjacent cylinders at critical wavelengths, resulting in relatively larger wave loads.
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Fig. 33 Cnoidal wave maximum forces on the third cylinder, for one-, two-, and three-cylinder cases, versus cylinder spacing
H = 0.2h and D = 4.0h. Wavelength L = 9.0h in the left sub-figure, and L = 11.0h in the right sub-figure

The 11.0h wavelength case does not show the same constructive interference near the 1.25D spacing as
the 9.0h wavelength case, see Figs. 31, 32, and 33. It does, however, show a similar effect for the spacing of
3.0D. This spacing of 3.0D (12.0h) is close in length to the wavelength (11.0h). For this case, the trough of
the wave, reflected off of the downwave cylinder, meets the downwave side of the upwave cylinder, at the same
instant as the new wave impacts the upwave side. This effect is also found in the results of both equations and
for both the two- and three-cylinder cases.

The effect of the third cylinder is to amplify the effects relative to the two-cylinder case.Both the constructive
and destructive interferences are increased. For example, as described above for the 9.0h wavelength and 1.0D
spacing, the interactions with the waves with the first and second cylinders increase the force on both cylinders
as seen in Figs. 31 and 32. A similar effect is found between the second and third cylinders. The result is a
significant increase in the force on the second cylinder. These increases are 25% for the gB equations and 14%
for the GN equations.

The forces on the third cylinder behave similar to the forces on the second cylinder in the two-cylinder case.
The last cylinder in each case exhibited similar behavior. The third cylinder, in general, has more shielding
and smaller forces than the second cylinder in the two-cylinder case.

For cnoidal waves, the combined effect of both nonlinearity and multiple cylinder constructive interference
can significantly increase the resulting forces on a vertical cylinder. In the 0.2h wave height case, for both the
gB and the GN equations, the combined effects are shown to increase the forces up to approximately 45% over
the linear single-cylinder case. A larger wave height would produce an even greater difference.

All of the above statements in regard to the forces also apply to the moments.

7 Summary and conclusions

The problem of interaction of nonlinear waves of cnoidal typewith vertical cylinders in shallowwater is studied
by use of the Green–Naghdi equations, the Boussinesq equations, and linearized form of the two equations.
The governing equations are solved in boundary-fitted curvilinear coordinate computational domain by use of
a mapping technique. Results are presented in the form of the wave-induced force and moment on the vertical
cylinders. Results of the GN, the gB, and the linearized equations are compared with each other in all cases
and with the available data for the single-cylinder case. Effect of neighboring cylinders on the wave diffraction
is discussed quantitatively.

Overall, close agreement is observed between the results of theGreen–Naghdi equations and theBoussinesq
equationswith laboratorymeasurements and existing theoretical solutions. The agreement is significantly better
for the range of long waves. The performance of the Green–Naghdi equations is found to be generally better
than the Boussinesq equations. They produce values for the forces and the moments that are in slightly closer
agreement with both the experimental data and other predictions. This is true for both the solitary wave and
cnoidal wave cases.

It is shown that nonlinearity can significantly increase the forces and moments, relative to the linear case.
For the cnoidal waves, the Green–Naghdi equations show a greater increase than the Boussinesq equations.
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As the wave height increases, the nonlinearity increases, which causes a corresponding increase in the force
and moment. Larger wave heights produce greater difference between the linear and nonlinear equations as
expected. Similarly, it is found that the diffraction theory of MacCamy and Fuchs [41] significantly underes-
timates the loads on the (single) cylinder for long waves.

It is found that the presence of the second and third cylinders on the wave loads on all cylinders is significant
in general. In a number of cases studied here, the resultant loads on the first cylinder have increased due to the
second and third cylinders, particularly in the case of cnoidal waves. Such effect is found to be a function of the
distance between the cylinders. This is in qualitative agreement with the results obtained for wave interaction
with an array of vertical cylinders in deep water.

The shielding effect of the leading cylinder on the downwave cylinders varies nonlinearly with the wave-
length and the cylinder spacing. In some cases, the loads on the second cylinder are larger than those on the
first cylinder. Almost in all cases, however, the force on the third cylinder is smaller than that on the first
cylinder. The impact of neighboring cylinders on the cnoidal wave loads is much more complex than solitary
wave loads.

The Level I GN equations do not present any relation for the pressure distribution over the water column.
It is shown that the (total) pressure varies almost linearly from the free surface of cnoidal waves to the seafloor.
The error associated with this assumption is shown to be very small, even for large waves. Further information
about the fluid flow properties over the water column can be obtained by use of the high-level GN equations.

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://
creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided
you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate
if changes were made.
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