

CE50031 Hydrodynamics of Fluid-Structure Interaction

MODULE GUIDE and SYLLABUS

MODULE CE50031 Hydrodynamics of Fluid-Structure Interaction

INFORMATION Semester 1 and 2, 2017-2018 Academic Year

Module Masoud Hayatdavoodi, Ph.D. Office: Fulton Building, J10

School of Science and Engineering Website:https://sites.dundee.ac.uk/masoud/

Semester 1 Class • Lectures:

SCHEDULE

Weeks 1-12, Monday, 04:00PM - 05:00PM at Fulton H2

Weeks 1-3, 5-7, 9, 11-12, Wednesday, 02:00PM - 03:00PM at Fulton H2

Weeks 4, 8, 10, Wednesday, 04:00PM - 05:00PM at Fulton H2

• Tutorials: Weeks 4, 6, 8 and 10, Friday, 11:00AM - 12:00PM at Fulton H2

• Laboratory: Weeks 6-12, Thursday, 2:00PM - 04:00PM at Fulton F13, Hydraulics Lab

Office Hours Monday: 03:00PM-04:00PM

Wednesday: 03:00PM-04:00PM Friday: 03:00PM-04:00PM

And by appointments.

Grading Written Assignments (six over the year) 30%

Laboratory Assignments (two over the year) 10%Final Examination 60%

GRADING SCALE

 $A \geq 70\%$

B ≥ 60%

 $C~\geq 50\%$

 $D \ge 40\%$

F~<40%

For more information see:

https://www.dundee.ac.uk/governance/policies/policy-taught-provision/

References

Textbooks

- Newman, John N. (1977), Marine Hydrodynamics, The MIT Press, 432 pp., ISBN: 978-0262140263.
- Batchelor, G.K. (2000), An Introduction to Fluid Dynamics, Cambridge University Press, 658 pp., ISBN: 978-0521663960
- Kundu, Pijush K., Cohen, Ira M., Dowling, David R. (2011), Fluid Mechanics, Academic Press; 5 edition, 920 pp., ISBN: 978-0123821003.
- Lighthill, James (1993), Fundamental Mechanics of Fluids, McGraw-Hill, Second Ediction, 454 pp., ISBN 0-07-113242-2

- Chakrabarti, S.K. (2003), Hydrodynamics of Offshore Structures, WIT Press / Computational Mechanics, 464 pp., ISBN: 978-0905451664.
- Sarpkaya, Turgut and Isaacson, Michael (1981), Mechanics of Wave Forces on Offshore Structures, Van Nostrand Reinhold Company; First edition, 651 pp., ISBN: 978-0442254025.
- Le Mhaut, Bernard (1976), An Introduction to Hydrodynamics and Water Waves, Springer Berlin Heidelberg, 322 pp., ISBN: 978-3-642-85569-6
- Lighthill, James (2001), Waves in Fluids (Cambridge Mathematical Library Series), Cambridge University Press; 2 edition, 524 pp., ISBN: 978-0521010450.
- Dean, Robert G. and Dalrymple, Robert A. (1991), Water Wave Mechanics for Engineers & Scientists (Advanced Series on Ocean Engineering-Vol. 2), World Scientific Pub Co Inc, 353 pp., ISBN: 978-981-02-0421-1.
- Whitham, G. B. (1999), Linear and Nonlinear Waves, Wiley-Interscience, 660 pp., ISBN: 978-0471359425.

Online References

- Journe, J.M.J. and Massie, W.W. (2001), Offshore Hydromechanics, Delft University of Technology, First Edition, 570 pp., available online at http://www.shipmotions.nl/DUT/LectureNotes/OffshoreHydromechanics.pdf.
- Le Mehaute, B. (1976), An introduction to hydrodynamics and water waves, Springer-Verlag Berlin Heidelberg, 323 pp., 978-3-642-85567-2. https://repository.library.noaa.gov/view/noaa/10669/noaa_10669_DS1.pdf.
- Dhanak, M. R. and Xiros, N. I. (Eds.), (2016). Springer Handbook of Ocean Engineering, Springer, 1345 pp., ISBN 978-3-319-16649-0.
 http://www.springer.com/gb/book/9783319166483.
 (Available to UoD students free of charge through the library links.)

MODULE COMMUNICATIONS

Module-related material, along with class communications, are held on *My Dundee* portal. Students are expected to check and use the module webpage regularly. All required material should be downloaded from My Dundee and stored locally; access to the module page will not be extended beyond the current academic year.

Module Aims

The aim of this module is to enable individuals to analyse the theoretical and experimental principles of fluid-structure interaction problems in ocean engineering, and to develop and extend understanding of engineering principles as they relate to the design of floating or fixed structures in the oceans.

INTENDED LEARNING OUTCOMES On completion of this module students should be able to:

- clearly understand and explain the principles of the motion of viscous and ideal fluids and laminar and turbulent boundary layers in fluid mechanics,
- demonstrate a comprehensive understanding of linear and nonlinear water wave theories and analyse the kinematics, dynamics and propagation properties of water waves,
- critically assess the applicability of different analytical and empirical approaches in calculating wave and current loads on structures,
- concisely formulate the diffraction, radiation and motion of floating and submerged bodies in deterministic and irregular waves,
- be equipped to design offshore structures for extreme ocean conditions,
- develop effective self-learning skills.

Prerequisites

CE40006 Environmental Hydraulics or equivalent background.

ATTENDANCE POLICES The module content will be primarily discussed in class. Some (and NOT all) module material will be made available online through *My Dundee* portal. It is assumed that students will attend all lectures and tutorials, and take notes of the material written on the board and discussed in class.

FINAL EXAMINATION:

The final examination of this module will be given at the end of Semester 2. The Semester 2 examinations will begin on 23/04/2018 and ends 25/05/2018. Exact day and time of this module's examination will be set and announced by the University prior to the examination month.

SEMESTER 1 TENTATIVE SCHEDULE

Monday		Wednesday	
Sep 11th	1	13th	2
Module Introduction		Preliminaries	
18th	3	20th	4
Indicial Notation		Cartesian Tensors	
25th	5	27th	6
Dimensional Analysis		Viscous Fluid Motion	
Oct 2nd	7	4th	8
Viscous Fluid Motion		Viscous Fluid Motion	
9th	9	11th	10
Viscous Fluid Motion		Viscous Fluid Motion	
16th	11	18th	12
Ideal Fluid Motion		Ideal Fluid Motion	
23rd	13	25th	14
Ideal Fluid Motion		Ideal Fluid Motion	
30th	15	Nov 1st	16
Linear Wave Theory		Linear Wave Theory	
6th	17	8th	18
Linear Wave Theory		Particle Kinematics and Dynamics	
13th	19	15th	20
Particle Kinematics and Dynamics		Particle Kinematics and Dynamics	
20th	21	22nd	22
Wave Power and Energy		Nonlinear Wave Theories	
27th	23	29th	24
Reading Day; No Class		Reading Day; No Class	

SEMESTER 2 TENTATIVE SCHEDULE

Monday		Tuesday	
Jan 15th	1	16th	2
Module Review		Module Review	
22nd	3	23rd	4
Wave Diffraction		Wave Diffraction	
29th	5	30th	6
Wave Diffraction		Wave Diffraction	
		, vare 2 infection	
Feb 5th	7	$6 ext{th}$	8
Wave Loads		Wave Loads	
12th	9	13th	10
Wave Loads	9	Wave Loads	10
wave Loads		wave Loads	
19th	11	20th	12
Wind and Current Loads		Wind and Current Loads	
26th	13	27th	14
Hydroelasticity	10	Hydroelasticity	14
Trydroetasticity		Trydroelasticity	
Mar 5th	15	6th	16
Floating Bodies		Floating Bodies	
104	-1-	19.1	10
12th	17	13th	18
Floating Bodies		Floating Bodies	
19th	19	20th	20
Random seas		Random seas	
2641	0.1	974	00
26th	21	27th	22
Transfer functions for responses		Transfer functions for responses	
Apr 2nd	23	3rd	24
Degree Exam Review		Reading Day; No Class	
0.00		J V, 1	