

MASE 363 - Dynamics and Vibrations

COURSE SYLLABUS

Course Information	Dynamics and V Fall 2015	Vibrations - MASE 363			
Course Instructor	Masoud Hayatdav Instructional Assis Ocean Engineering	stant Professor	Office: PMEC 117 E-mail: masoud@tamu.edu Website:http://people.tamu.edu/~masoud/		
Teaching Assistant	Shanran Tang		Office: PMEC 120 Email: srtang@tamu.edu		
CLASS SCHEDULE	 Lecture: Monday, Wednesday 04:00 PM to 04:50 PM at PMEC 146 Problem Solving: Friday, 04:00 PM - 05:50 PM at PMEC 146 				
Office Hours	Monday, Wednesday, Friday: 02:00PM-03:00PM, And by appointment.				
Grading	Assignments Midterm Exam Project Final Exam	20% 30% 20% 30%			
GRADING SCALE	$\begin{array}{rrrr} A & \geq 90\% \\ B & \geq 75\% \\ C & \geq 60\% \\ D & \geq 50\% \\ F & < 50\% \end{array}$				
Τεχτβοοκ	 Required: Hibbeler, Russell C. (2015), "Engineering Mechanics: Dynamics," Prentice Hall; 14 edition, ISBN: 978-0133915389, 784 pp. Rao, Singiresu S. (2010), "Mechanical Vibration," Prentice Hall; 5 edition, ISBN: 978-0132128193, 1104 pp. Alternative Reference Books: Childs, Dara W. (2010), "Dynamics in Engineering Practice," CRC Press; 10 edition, ISBN: 978-1580534970, 390 pp. Thomson, William T. and Dahleh, Marie Dillon (1997), "Theory of Vibration with Applications," Prentice Hall; 5 edition, ISBN: 978-0136510680, 534 pp. 				
	Chakrabarti, 20: The Theory	y and Practice of Hydrodynamics	d Series on Ocean Engineering, Volume s and Vibration," World Scientific, ISBN:		

978-981-02-4922-9, 484 pp.

MASE 363 - Dynamics and Vibrations

Course Communications	Course-related material, along with class communications, are held on $eCampus$ through $Howdy$ portal. Students are expected to check and use the course webpage on regular basis.
Course Description	Application of Newtonian and energy methods to model dynamic systems with ordinary differential equations; dynamics and vibrations of linear single- and multi-degree of free- dom systems of particles and rigid bodies; solutions of models using analytical approaches; interpreting solutions; application to simple floating systems.
Learning Outcomes	This course is intended to introduce the student to the fundamental aspects of dynamics and vibrations as it applies to machines, structures, and engineering components. Upon completion of this course, students will be able to apply the principal of Newton's 2nd law of motion in various forms. The student will also be exposed to the fundamental aspects of vibration analysis, which will pave the way for solving vibration problems based on conventional closed form analytical basis as well as numerical basis. The vibration state solving methods will serve as precursor to more advanced vibratory methods, which will be in future courses on the subject matter. This course supports ABET criteria A, E and K, and criteria 2 and 3.
Prerequisites	MASE 221 with a grade of C or better; MATH 308 with C or better; MASE 261. Enrollment in OCSE major degree sequence and junior or senior classification.
Attendance and Make-up Polices	Information concerning absences is contained in the University Student Rules Section 7 http://www.tamug.edu/stulife/Academic%20Rules/Rule%207.pdf.
	The University views class attendance as an individual student responsibility. All students are expected to attend class and to complete all assignments. Late arrivals count as absences. Please consult the University Student Rules for reasons for excused absences, detailed procedures and deadlines as well as student grievance procedures (Part III, Section 45). If the absence is excused, the student will be provided an opportunity to make up any quiz, exam or other work that contributes to the final grade. The evaluation method will be decided by the instructor. The evaluation date is agreed upon by the student and instructor.
Academic Integrity	An Aggie does not lie, cheat or steal, or tolerate those who do. For additional information visit: http://www.tamug.edu/HonorSystem.
Americans with Disabilities Act (ADA)	The Americans with Disabilities Act (ADA) is a federal non-discrimination statute that provides comprehensive civil rights protection for persons with disabilities. Among other things, this law requires that all students with disabilities be guaranteed a learning environment that provides for reasonable accommodation of their disabilities. If you believe you have a disability requiring an accommodation, please contact the Counseling Office, Seibel Student Center, or call (409)740-4587. For additional information visit: http://www.tamug.edu/counsel/Disabilities.html.

MASE 363	-	Dynamics	\mathbf{and}	Vibrations
----------	---	----------	----------------	------------

TENTATIVE	
Schedule	

Monday	WEDNESDAY	Friday
Aug 31st 1 Course Introduction	Sep 2nd 2 Preliminaries	4th 3 Preliminaries
7th4Equations of Motion	9th 5 Problem Solving	11th6Problem Solving
14th7Force and Acceleration	16th8Force and Acceleration	18th 9 Problem Solving
21st10Work and Energy	23rd 11 Work and Energy	25th 12 Problem Solving
28th13Impulse and Moment	30th14Impulse and Moment	Oct 2nd15Problem Solving
5th16Rigid Body Motion	7th17Rigid Body Motion	9th 18 Problem Solving
12th19Rigid Body Motion	14th20Midterm Review	16th21Midterm Exam
19th22Fundamentals of Vibrations	21st23Fundamentals of Vibrations	23rd 24 Problem Solving
26th 25 Free Vibration	28th26Forced Vibration	30th27Problem Solving
Nov 2nd 28 Damped Free Vibration	4th 29 Damped Free Vibration	6th 30 Problem Solving
9th 31 Damped Forced Vibration	11th32Damped ForcedVibration	13th33Problem Solving
16th34Project Submission	18th35Nonlinear Vibrations	20th 36 Problem Solving
23rd 37 Hydrodynamics and Vibrations	25th 38 Hydrodynamics and Vibrations	27th Thanksgiving Holiday
30th 39 Multi-degree Vibrations	Dec 2nd 40 Multi-degree Vibrations	4th 41 Problem Solving
7th 42 Problem Solving	9th 43 Final Exam Review	11th44Final Exam

Final Exam: Friday, December 11, 2015, 03:30 PM to 05:30 PM, PMEC 146.