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Highlights 

• An analytical scheme is developed for wave-elastic plate interaction near an inclined beach. 

• The linearized shallow water equation is employed for calculation efficiency.  

• Analysis is provided for the wave runup on the beach and strain on the plate.  

 

1. Introduction  

Solar photovoltaics are widely acknowledged as pivotal technology for mitigating global 

carbon emissions [1]. In contrast to other energy power plants, solar photovoltaic power 

generation is proportional to its surface coverage, necessitating a considerably large area to 

deploy an industrial-scale power plant. One popular scenario is to develop floating 

photovoltaics (FPV) on oceans [2], especially near the coastlines, which allows solar farms to 

benefit from the existed power transmission and distribution networks, leading to cost savings. 

In this paper, the interaction between long waves and a solar farm floating near an inclined 

beach is investigated analytically. The floating solar coverage is modelled as an elastic thin 

plate. Unlike related studies that focus on finite water depth [3], in our work, we consider the 

physical scenario in a shallow water region, and the fluid is described by the linearized shallow 

water equation. This approach not only conforms to the physics reality but is also more efficient 

in addressing the sloping region and in terms of calculation. 

 

2. Mathematical modelling and solution procedure 

The problem of interaction between waves and an elastic plate floating near an inclined beach 

is sketched in Figure 1. A Cartesian coordinate system 𝑂-𝑥𝑧 is established with the origin at 

the intersection point of the sloping beach and the mean water surface. The 𝑥-axis is reversely 

along the mean water surface, and the 𝑧-axis points upwards. The slope angle of the beach is 

denoted by 𝛽. The mean water depth, ℎ(𝑥), is constant, equalling to ℎ0, at the flat seabed 

region, and ℎ(𝑥) = −𝑥 tan𝛽 at the sloping beach region. An incident wave comes from 𝑥 =
−∞ and will be scattered by the elastic plate covering the water surface at 𝑥1 ≤ 𝑥 ≤ 𝑥2, where 

𝑥2 = 𝑥1 + 𝑑 with 𝑥2 ≤ 𝑥3 = −ℎ0 cot 𝛽, and 𝑑 represents the length of the plate. It is assumed 

that two edges of the plate at 𝑥 = 𝑥1,2 are each connected to the seabed by mooring lines.  

 

 

Figure 1: Illustration of the problem. 

mailto:yifeng.yang.19@ucl.ac.uk


The incoming wave is assumed to be periodic in time 𝑡 with radial frequency 𝜔. Hence, the 

velocity potential and wave elevation can be written as Φ(𝑥, 𝑡) = Re{𝜙(𝑥)𝑒i𝜔𝑡}  and 

𝑊(𝑥, 𝑡) = Re{𝜂(𝑥)𝑒i𝜔𝑡}. A domain decomposition approach is used to treat this problem. As 

shown in Figure 1, the entire domain are divided into four subdomains, namely Ω1 (−∞ < 𝑥 <

𝑥1), Ω2 (𝑥1 ≤ 𝑥 ≤ 𝑥2), Ω3 (𝑥2 < 𝑥 ≤ 𝑥3) and Ω4 (𝑥3 < 𝑥 ≤ 0). We may use 𝜙(𝑗) to represent 

the spatial velocity potential in Ω𝑗  ( 𝑗 = 1~4 ). Under the linearized shallow water wave 

assumption [4], the velocity potential is assumed to be a constant along the 𝑧-direction, which 

is only valid when the wavelength 𝜆 ≫ ℎ0. 𝜙(𝑗) (𝑗 = 1, 3) are governed by  
d2𝜙(𝑖)(𝑥)

d𝑥2
+

𝜔2

𝑔ℎ0
𝜙(𝑖)(𝑥) = 0,  𝑥 ∈ Ω𝑖 (𝑖 = 1, 3),   (1) 

where 𝑔 represents the acceleration due to gravity. 𝜙(2) satisfies  

[𝐿
d6

d𝑥6
+ (𝜌𝑔 −𝑚𝑒𝜔

2)
d2

d𝑥2
+
𝜌𝜔2

ℎ0
] 𝜙(2)(𝑥) = 0, 𝑥 ∈ Ω2,  (2) 

where 𝐿 = 𝐸ℎ𝑒
3/[12(1 − 𝜈2)] is the flexural rigidity and 𝑚𝑒 = 𝜌𝑒ℎ𝑒 is the mass per unit area 

of the plate, with 𝐸, 𝜈, 𝜌𝑒 and ℎ𝑒 denoting the Young’s modulus, Poisson’s ratio, density and 

thickness of the plate, respectively. 𝜌 represents the density of water. From Synolakis [5], 𝜙(4) 
is governed by  

[
𝑥 tan𝛽

ℎ0

d2
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d

d𝑥
−
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𝑔ℎ0
] 𝜙(4)(𝑥) = 0,  𝑥 ∈ Ω4.  (3) 

At the interfaces 𝑥 = 𝑥𝑗  (𝑗 = 1 , 2 , 3), the continuity of pressure and horizontal velocity 

requires  

𝜙(𝑗)(𝑥𝑗) = 𝜙
(𝑗+1)(𝑥𝑗),  

d𝜙(𝑗)(𝑥𝑗)

d𝑥
=

d𝜙(𝑗+1)(𝑥𝑗)

d𝑥
,  𝑗 = 1, 2, 3. (4a, b) 

The spatial wave elevation 𝜂(𝑥) can be expressed as  

𝜂(𝑥) = {
i
ℎ0

𝜔

d2𝜙

d𝑥2
𝑥1 ≤ 𝑥 ≤ 𝑥2

−
i𝜔

𝑔
𝜙 others

.     (5) 

At the edges of the plate, mooring lines are used to connect the elastic plate to the seabed to 

maintain its stability. In such a case, the bending moment and shear force of the plate satisfy  

{

d2𝜂(𝑥𝑗)

d𝑥2
= 0

𝐿
d3𝜂(𝑥𝑗)

d𝑥3
= 𝑞𝑗𝜂(𝑥𝑗)

,  𝑗 = 1, 2,   (6a, b) 

where 𝑞𝑗 denotes the stiffness of the mooring lines at 𝑥𝑗. 

To solve the boundary value problem, we may employ the method of matched eigenfunction 

expansion. As a result, 𝜙(1)(𝑥) and 𝜙(3)(𝑥) can be written as  

𝜙(1)(𝑥) = 𝐼𝑒−i𝓀0𝑥 + 𝑅𝑒i𝓀0𝑥,   𝑥 ∈ Ω1,  (7) 

𝜙(3)(𝑥) = 𝐶𝑒−i𝓀0𝑥 + 𝐷𝑒i𝓀0𝑥,  𝑥 ∈ Ω3 ,  (8) 

where 𝓀0 = 𝜔/√𝑔ℎ0 denotes the wave number, 𝐼 = i𝐴𝑔/𝜔 with 𝐴 denotes the amplitude of 

the incoming wave. 𝑅, 𝐶 and 𝐷 are unknown coefficients. Similarly, 𝜙(2)(𝑥) provides  

𝜙(2)(𝑥) = ∑ (𝐴𝑚𝑒
−i𝜅𝑚𝑥 + 𝐵𝑚𝑒

i𝜅𝑚𝑥)0
𝑚=−2 ,  𝑥 ∈ Ω2.  (9) 

where 𝐴𝑚 and 𝐵𝑚 are unknwon coefficients, 𝜅𝑚 (𝑚 = −2, −1, 0) satisfy  

𝐿𝜅𝑚
6 + (𝜌𝑔 −𝑚𝑒𝜔

2)𝜅𝑚
2 −

𝜌𝜔2

ℎ0
= 0,     (10) 

where 𝜅−2 and 𝜅−1 are two complex roots with negative imaginary part, and 𝜅−2 = −�̅�−1. 𝜅0 

is the positive real root. 𝜙(4) , governed by the nonlinear Eq. (3), can be solved analytically by 

using variable substitution.  Letting 𝜉 = 2𝓀0√−𝑥ℎ0 cot 𝛽, we obtain  

d2𝜙(4)(𝑥)

d𝑥2
+
1

𝜉

d𝜙(4)(𝑥)

d𝑥
+ 𝜙(4)(𝑥) = 0.     (11) 



Eq. (11) is the zero-th order Bessel equation, which gives  

𝜙(4)(𝑥) = 𝐹𝒥0(𝜉) = 𝐹𝒥0(2𝓀0√−𝑥ℎ0 cot 𝛽),   (12) 

where 𝒥𝑛 denotes the 𝑛-th Bessel function of the first kind, and 𝐹 is an unknown coefficient.  

To solve the above 10 unknown coefficients, we may match the velocity potential at 𝑥 = 𝑥𝑗 

(𝑗 = 1, 2, 3) by using Eq. (4), which yields the following six linear equations 

{
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𝑚=−2 = 0

−i𝓀0𝐶𝑒
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. (13a~f) 

Four extra equations can be also obtained from the edge conditions in Eq. (6), or  

{
∑ 𝜅𝑚

4 (𝐴𝑚𝑒
−i𝜅𝑚𝑥𝑗 + 𝐵𝑚𝑒
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,  𝑗 = 1, 2. (14a, b) 

Using Eqs. (13) and (14), all the unknown coefficients listed above can be solved.  

 

3. Results and analysis 

In the following calculations, the typical values of the elastic plate and the fluid are chosen as  

𝜌 = 1025 kgm−3,   ℎ0 = 20m,   𝑔 = 9.81 ms
−2, 𝜌𝑒 = 0.9𝜌,   𝐸 = 5 GPa,   𝜈 = 0.3. (15) 

All the variables and numerical results are presented in the non-dimensionalized form based 

on a combination of 𝜌, 𝑔 and ℎ0. 

The wave runup at 𝑥 = 0, or |𝜂(0)|/𝐴, versus wave period 𝑇 under different values of plate 

thickness ℎ𝑒 and plate length 𝑑 are displayed in Figure 2(a) and (b), respectively. We observe 

that |𝜂(0)|/𝐴 shows an oscillatory behaviour with 𝑇 when there exists a floating elastic plate, 

or ℎ𝑒 > 0. Besides, such oscillation phenomenon becomes much more obvious as ℎ𝑒 and 𝑑 

increase. From the aspect of coastal engineering, the presence of the elastic plate sometimes 

cannot work as a wave barrier to reduce the wave runup at the shore, and even cause more 

significant wave elevation on the shore. Moreover, Figure 3 also illustrated that long waves are 

less affected by the elastic plate. The maximum principal strain in the elastic plate can be 

calculated by 

𝜖𝑚𝑎𝑥 = max {|
ℎ𝑒

2

d2𝜂(𝑥)

d𝑥2
|} = max {|

iℎ0ℎ𝑒

2𝜔
∑ 𝜅𝑚

4 (𝐴𝑚𝑒
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𝜖𝑚𝑎𝑥 versus the slope angle 𝛽 and the stiffness 𝑞1 and 𝑞2 are presented in Figure 3, where a 

similar oscillatory behaviour of 𝜖𝑚𝑎𝑥  versus 𝑇  is observed. In Figure 3(a), this oscillatory 

behaviour becomes weaker as the increase of 𝛽, and less peaks can be observed in the curves 

of 𝜖𝑚𝑎𝑥  versus 𝑇. Figure 3(b) demonstrates that the strain induced by long waves may be 

increased if larger stiffnesses are used.  

4. Conclusions 

The interaction between waves and a moored elastic plate floating near an inclined beach is 

investigated analytically. Typical results and discussions are made on the wave runup on the 

beach, and the maximum principal strain on the elastic plate. It is found that they both show 

oscillatory behaviour with the wave period, and this phenomenon is affected by typical physical 

parameters of the plate and the beach, such as the slope angle of the beach, thickness & length 

of the elastic plate, as well as stiffness of the mooring lines.  



 

Figure 2. Wave runup at 𝑥 = 0. (a) 𝑑/ℎ0 = 25 and varying ℎ𝑒/ℎ0. (b) ℎ𝑒/ℎ0 = 0.1 and varying 

𝑑/ℎ0. (𝛽 = 10o, 𝑞1/𝜌𝑔ℎ0 = 𝑞2/𝜌𝑔ℎ0 = 4.973 × 10
−1, (𝑥3 − 𝑥2)/ℎ0 = 0.5) 

 
Figure 3. Maximum principal strain in the elastic plate. (a) Under different 𝛽, 𝑞1/𝜌𝑔ℎ0 = 𝑞2/𝜌𝑔ℎ0 =
4.973 × 10−1. (b) Under different 𝑞1 & 𝑞2, 𝛽 = 30o. (ℎ𝑒/ℎ0 = 0.1, 𝑑/ℎ0 = 5, (𝑥3 − 𝑥2)/ℎ0 = 0.5)  
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