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A high-order shifted boundary method for water waves and floating bodies

Jens Visbech1, Allan P. Engsig-Karup1, Harry B. Bingham2,
Mostafa Amini-Afshar2, and Mario Ricchiuto3

1 Dept. of Applied Mathematics, Technical University of Denmark, DK
2 Dept. of Civil & Mechanical Eng., Technical University of Denmark, DK

3 Team CARDAMOM, INRIA, U. Bordeaux, CNRS, Bordeaux, France
Email to the corresponding author: jvis@dtu.dk

INTRODUCTION
We consider the setting of fully nonlinear potential flow when simulating free surface waves
using finite volume/cell/element methods. Here, the fluid domain is bounded by arbitrarily
complex boundaries in topology and shape but also time-dependent (deforming or/and moving).
Therefore, modeling such problems can be challenging and time-consuming from a meshing-
point-of-view. If mesh updates are required [1], the domain should be re-meshed at each discrete
time step, which provides a heavy computational burden. One way to circumvent this challenge
is to consider unfitted/embedded/immersed boundary-type methods, where a simple – easy-
to-generate – regular-shaped mesh is constructed once. Hereafter, the true domain is placed
– and freely moved – on top of this background mesh. Enforcing boundary conditions is how
unfitted methods differ from each other. One – relatively new – unfitted boundary method
is the shifted boundary method (SBM), which we define more thoroughly in the upcoming
section. Unfitted approaches have been developed for wave problems in recent years, where we
highlight a few: The harmonic polynomial cell method with immersed type boundaries and/or
overlapping grids in [2]. The same techniques have also been applied to the finite difference
method in [3]. This abstract presents our recent developments toward modeling water waves
and floating bodies using the SBM combined with a high-order spectral element method (SEM).
Ultimately, we aim to model highly nonlinear wave-wave and wave-structure interactions using
these techniques.

Figure 1: Concept of the SBM with Ω ⊆ Ωh.

SHIFTED BOUNDARY METHOD
Main & Scovazzi originally proposed the
shifted boundary idea in [4, 5] for solv-
ing boundary value problems using the fi-
nite element method. The key idea be-
hind the SBM is to embed the true do-
main, Ω ∈ IRd, where d = {1, 2, 3}, onto
a regular-shaped affine mesh, denoted as
the surrogate domain, Ωh ∈ IRd. Now,
the problem is solved on Ωh and its sur-
rogate boundary, Γh = ∂Ωh; however, the
boundary information is only defined on the true boundary, Γ = ∂Ω. To close this problem,
two ideas are combined: i) a mapping between points on the true boundary, x = (x, y) ∈ Γ and
points on the surrogate boundary, x = (x, y) ∈ Γh, as defined by

M(x) : Γh 7→ Γ, x 7→ x, (1)

and ii) a Taylor expansion to satisfy the boundary condition and conserve the optimal conver-
gence rate of the chosen numerical method. The SBM naturally incorporates curved geometrical
features, requires no re-meshing, and avoids the small-cut-cell problem that classical embedded
cut-type methods suffer from. See Figure 1 for the SBM concept. Note that on the figure,



Ω ⊆ Ωh, yet Ωh ⊆ Ω, is also a possibility. Since the original work, many developments have
been made for this numerical technique, including a high-order extension in [6]. The SBM and
SEM connection was recently established for the two-dimensional Poisson problem in [7]. Here,
a polynomial correction was employed to avoid the explicit evaluation of the Taylor series, which
becomes cumbersome for high-order methods and three-dimensional problems [8].

Figure 2: Embedding example of Γη, Γb,
and Γbody in a background mesh and their
respective normals, n.

GOVERNING EQUATIONS
We consider the true fluid domain, Ω, that is
bounded by the time-depended free surface, Γη,
and the bathymetry, Γb. Moreover, we have rigid
walls, Γw, or periodic boundaries, Γp, both de-
fined vertically at the ends of Ω. Lastly, body
boundaries are denoted by Γbody. We adopt the
setting of potential flow, such that the velocities,
u = (u,w)T , are expressed as u = ∇ϕ where
∇ = (∂x, ∂y)

T . Now, we seek to find ϕ ∈ C2(Ω)
by solving the Laplace problem given as

∇2ϕ = 0, in Ω× T ,

ϕ = ϕη, on Γη × T ,

∇ϕ · n = qi, on Γi,

ϕ|x=xmin = ϕ|x=xmax , on Γp if Γp /∈ ∅,

(2)

where i ∈ {b,w,body}, n is the outward-facing normal, and T : t ≥ 0 is the time domain.
Moreover, qi = 0 on Γb and Γw and qi ̸= 0 on Γbody. Combined with (2) are the conditions on
Γη × T

∂tη = −∂xη∂xϕη + wη(1 + ∂xη∂xη), and ∂tϕη = −gη − 1

2
∂xϕη∂xϕη +

1

2
w2
η(1 + ∂xη∂xη). (3)

WEAK FORMULATIONS
The boundary data in (2) are enforced weakly through an Aubin-type penalty formulation; see
[7] and note that other formulations also can be used. For the conformal problem with Γp ∈ ∅,
we get

(∇ϕ,∇v)Ω + τ(ϕ, v)Γη − (∇ϕ · n, v)Γη = τ(ϕη, v)Γη + (qi, v)Γi , (4)

where v is a test function and (a, b)S =
∫
S a · b dS is the inner product. Moreover, an implicit

summation over i ∈ {b,w,body} is used. Also, τ is a problem-depended penalty parameter.
Now, we make the shift from Ω to Ωh and similarly for the boundaries. Therefore, we get a
problem entirely defined in the surrogate domain as

(∇ϕ,∇v)Ωh
+ τ(ϕ, v)Γη

h
− (∇ϕ · n, v)Γη

h
= τ(ϕη, v)Γη

h
+ (qi, v)Γi

h
, (5)

where n is the outward facing normal on Γh. The challenge is now to determine the value of the
boundary data, ϕη and qi, on Γh using ϕη and qi from Γ, while preserving consistency between
the two. For this, we apply a polynomial correction (omitted for conciseness, see [7, 8]), as

(∇ϕ,∇v)Ωh
+ τ(ϕ(x), v)Γη

h
− (∇ϕ · n, v)Γη

h
+ nn(∇(ϕ(x)− ϕ) · n, v)

Γ
i
h
− nt(∇ϕ · t, v)

Γ
i
h

= τ(ϕη, v)Γη
h
+ nn(qi, v)Γi

h
,

(6)

where nn = n ·n and nt = n · t with t being the tangent on Γ. Moreover, recall that x = M(x)
which highlights the need for evaluating the basis – that is defined on Ωh – on Γ. Ultimately,
this formulation allows us to simulate nonlinear free surface waves in a domain with an arbi-
trary curved/complex bathymetry and bodies with a deforming/moving free surface without
re-meshing.



Figure 3: Convergence study in P
for embedded Laplacian of periodic
stream function wave with kh = 4 and
ϵ/ϵmax = 70% on three meshes.

NUMERICAL DISCRETIZATION
We adopt the usualmethod of lines approach, where the
surrogate domain, Ωh, is discretized using the SEM, see,
e.g., [9] for the discrete approach to solve (2)-(3). We
employ structured quadrilateral elements to represent
Ωh. The mapping, x = M(x), is chosen to be purely
vertical for Γη and Γb and along n for Γbody. See Fig-
ure 2 for a visualization of how Γη, Γb, and Γbody are
embedded.

RESULTS

Verification of the Laplacian: To verify the em-
bedded Laplacian, we perform p-convergence studies of
nonlinear stream functions waves with different wave
numbers, kh, and percentages of maximum steepness,
ϵ/ϵmax, on a periodic domain. Here, ϵ = H/L is the wave steepness and ϵmax is the maximum
possible wave steepness for a given kh. With this, Γw = Γbody = ∅ and h is constant. In Figure
3, a study of a kh = 4 and ϵ/ϵmax = 70% wave on three different meshes is seen, where Nx and
Nz is the number of elements in the two directions. For this test, Γb is embedded inside the
bottom row of elements in Ωh, whereas Γη is located just above the top row. This results in
both interpolation (Γb ⊆ Ωh) and extrapolation (Γη ̸⊆ Ωh) of the basis function as discussed in
[7]. From the figure, exponential decay in the error is confirmed when increasing the polynomial
order of the basis, although the curved free surface is represented on 2, 4, or 6 linear elements.

Figure 4: Stream function solution
(kh = 2π and ϵ/ϵmax = 70%) after 10
periods.

Propagation of a stream function wave: A
periodic wave with kh = 2π and ϵ/ϵmax =
70% is propagated for 10 periods. The place-
ment of Γη and Γb is as given above. At the
final time, the free surface elevation is plotted
against the true solution in Figure 4. The sim-
ulation is performed on a mesh with (Nx, Nz) =
(10, 2) for P = 6, and 1% of the energy in
the top mode is filtered out between each time
step. From the figure, the wave shape remains
stable despite the embedded computation of the
Laplacian. Minor numerical dispersive and diffu-
sive errors are seen as expected for a high-order
accurate numerical scheme for the resolution cho-
sen.

Horizontally forced cylinder in an infinite domain: As a last numerical experiment,
we displace a cylinder of radius R = 1 [m] horizontally by U/ω sin(ωt) in an infinite fluid.
Here, U = 0.2 [m/s] and ω = 1 [s−1]. This gives an inhomogeneous Neumann condition on
Γbody as qbody = U cos(ωt). Dirichlet conditions based on potential flow theory are enforced
on the remaining boundaries. A background mesh with elements of size 0.25 × 0.25 [m] and
order P = 4 is constructed once. From this, the cylinder is moved horizontally due to the
sinusoidal displacement, and the surrogate domain, Ωh, is formed accordingly. About 24 linear
surrogate boundary elements represent the cylinder depending on its location. The horizontal
force signal, Fx, is obtained by integrating the linearized Bernoulli’s equation over the body and
validated against the true analytical solution as seen in Figure 5. The figure shows acceptable
visual agreement despite the curved nature of the cylinder. With closer inspection (not visually



possible), small jumps in the force signal can be observed. This numerical artifact is generated
by varying – mesh-dependent – levels of truncation errors, ultimately leading to discontinuities in
the time signal. This phenomenon can also be seen in [3] and is subject to further investigation.

Figure 5: Force signal of a horizontally
forced cylinder in an infinite domain.

CONCLUSION AND PERSPECTIVES
We have presented preliminary results for modeling wa-
ter waves and bodies using a high-order shifted bound-
ary method. Waves and forced body motions were
modeled on very simple meshes, which still included
curvature and circumvented re-meshing of the domain.
These results indicate that this novel high-order em-
bedded technique can be useful for modeling nonlinear
wave-wave and wave-structure interactions. We aim
to show more elaborate numerical cases for nonlinear
wave-structure interaction at the workshop.
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