
The 39th International Workshop on Water Waves and Floating Bodies, 14-17 April 2024, St Andrews, Scotland

Wave Attenuation by Cultivated Seaweeds: a Linearized Analytical
Solution

Yanlin Shaoa, Morgane Weissb, Zhilong Weia,∗

a. Department of Civil and Mechanical Engineering, Technical University of Denmark, 2800,
Lyngby, Denmark

b. Swiss Federal Institute of Technology in Lausanne, 1015 Lausanne, Swiss
*Corresponding author. Email: zhilwei@dtu.dk

1 Introduction

An analytical framework is presented to describe the attenuation of regular and irregular waves prop-
agating over floating seaweed farms. Kelp blades suspending on the longlines are modeled, as a first
approximation, as rigid bars rotating around their upper ends. Assuming small-amplitude blade mo-
tions under low to moderate sea conditions, the frequency transfer function of the rotations can be
obtained, with quadratic drag loads linearized. Subsequently, the hydrodynamic problem with regular
waves propagating over suspended seaweed canopies is formulated using the continuity equation and
linearized momentum equations with additional source terms within the vegetation region. Analyt-
ical solutions are obtained for the regular waves with their heights decaying exponentially as they
propagate over the canopy. These analytical solutions are utilized as the basis to predict the wave
attenuation of irregular waves while stochastic linearization of the quadratic drag loads is employed.
The wave power spectral density is also seen to decay exponentially over the canopy. The present
solutions can also be extended to include the elastic deformation of the vegetation blades.

2 Theory

We consider a 2D fluid domain in the xz-plane, with a submerged vegetation canopy which divides the
whole fluid domain into three horizontal layers, as sketched in Fig. 1. The flow velocity and dynamic
pressure in the jth fluid layer are defined as uj = [uj , wj ] and pj , respectively. The heights of the
layers are defined as dj , j = 1, 2, 3. Right-going waves along the x-direction are considered. Their
wave lengths and amplitudes change gradually as they propagate over the canopy due to the inertia
and drag loads on the kelp blades, modelled as rigid rotating bars as a first approximation.
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Figure 1: Governing equations in each layer, boundary conditions on the interfaces, and the sketch
of a rigid bar pinned at the top. In Layer j = 1, 2, 3, pj is the dynamic pressure, uj = [u,w] is the
velocity vector, dj is the layer height. Inside the vegetation region (shaded area), an extra source term
due to the presence of vegetation, Fhd, is added to the linearized momentum equation. h = d1+d2+d3
is the water depth, η is the free-surface elevation, and ρ is water density. θ is the angle between the
rigid bar and the downward vertical direction. t denotes time.



2.1 Small-Amplitude Rotational Motion of a Rigid Bar in Regular Waves

As illustrated in Fig. 1, a rigid bar pinned at the top is fully submerged in water. There is one
single degree of freedom θ, the angle between the bar and the downward vertical direction. Morison’s
equation is used to calculate the hydrodynamic loads on it. The structure density ρs is assumed to
be larger than the water density ρ, i.e., ρs > ρ. As a result, the equivalent gravity in water is always
negative and acts as a restoring force. Assuming small-amplitude motion, i.e. θ ≪ 1, the moment
balance between the hydrodynamic loads and equivalent gravity on the rigid bar yields(
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where l is the length of the bar, I is the moment of inertia of the pendulum about the pivot point,
z0 = −d1 is the vertical position where the bar is pinned, M ′ = (ρs − ρ)lS is the equivalent gravity in
water and S is the cross-section area, ma = πρCMb2/4 and b is the span width of the bar. Bv is the
equivalent damping determined by
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where s = −z−z0 is the distance to the pinned top. CM and CD are the inertia and drag coefficients.
The Froude-Krylov force has been neglected here since the seaweed blade is quite thin. The wave-
radiation damping is ignored as it is negligibly smaller than the viscous damping.

If the local ambient horizontal velocity u2 can be approximated by a linear wave theory, a steady-
state solution can be obtained for Eq. (1). Let Θ be the complex response amplitude of θ and HΘ be
the corresponding transfer function.

2.2 Analytical Solution to Regular Waves over Flexible Canopies

The general procedure of the analytical solution in each layer is briefly introduced here. We assume
that the wave height decays exponentially as a function of horizontal distance x over the canopy. The
dynamic pressure takes the form of

pj = ℜ
{
Pj(dj , ω,H, . . . ; z)ei(ωt−kx)

}
, (3)

where Pj is the complex amplitude function of z but not x or t, k = kr+iki is the complex wave number,
H is the wave height, and ω is the wave frequency. In addition, i is the imaginary unit. The velocity
components uj and wj have similar expressions, and their corresponding complex amplitude functions
Uj and Wj can be expressed in term of Pj from the linearized momentum equations. A linear ordinary
differential equation (ODE) of Pj is given from the continuity equation in each layer. The ODEs of
Pj are solved with the boundary conditions, as summarized in Fig. 1. Linear free-surface conditions
and zero-Neumann condition are satisfied on the calm-water surface and a horizontal seafloor. On the
interfaces between different fluid layers, the vertical velocity and the pressure are continuous across
the layers.

Here we give the derivation details in Layer 2 (or the vegetation layer). Since small-amplitude
motions are assumed, we only consider the horizontal hydrodynamic load. In addition, the interfaces
between the canopy region and the water columns are also linearized onto z = −d1 and z = −(d1+d2).
In Layer 2, where −d1 − d2 < z < −d1, the continuity equation is given by
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The linearized momentum equations without convection and diffusion terms are considered, but with
additional source terms to account for the presence of the canopy:
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Here, Fx is the horizontal force per unit volume on the canopy given by Morison’s equation
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where b is the characteristic width of the blade, N is the number of the canopy components per unit
horizontal area, i.e. canopy density. Plugging Eq. (6) into the horizontal momentum equation in
Eq. (5), and linearizing the drag term will lead to
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where the overbar means time averaging. D can be obtained through an iterative method.
Combining Eqs. (3), (5) and (7), one has
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Inserting the equations above into the continuity equation Eq. (4) gives
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Similarly, the linear ordinary differential equations for P1 and P3 can be found. With the boundary
conditions on the free surface, two interfaces, and the bottom, Pj can be solved. In addition, the
dispersion relation reads
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If HΘ = 0, Eq. (11) reduces to the one for waves over rigid canopies, given in [2].

2.3 Analytical Solution to Irregular Waves over Flexible Canopies

In irregular waves, following the method of stochastic linearization, the damping is linearized as
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where σu2,r is the standard deviation of the relative velocity in Layer 2. Meanwhile, Bv in Eq. (2)
should be linearized in this way as well. Since we assume that the wave height decays exponentially
as a function of horizontal distance x over the canopy, i.e.,

H(x+ dx)

H(x)
= exp(ki(ω, x)dx), (16)



which is also the transfer function of wave height at x+dx, the wave spectrum along the canopy will
be

S(ω, x+ dx) = S(ω, x) exp(2ki(ω, x)dx). (17)

This equation is then used together with a simple numerical procedure to obtain the wave spectrum
at any location. If ki is assumed as constant over x, which is not mandatory in the present derivation,
Eq. (17) reduces to the same formula given by [2]

S(w, x) = S(w, x = 0) exp(2ki(ω, x = 0)x), (18)

where ki is only evaluated at x = 0. Note also that our derivation also includes inertia forces on the
vegetation, which has been ignored in [2].

3 Results

The analytical model is compared with experiments by [1] on irregular wave attenuation over a
submerged canopy. The wave conditions are based on a single peaked JONSWAP spectrum with
a peak enhancement factor γ = 3.5 and peak wave period Tp = 1.15 s. The incident significant
wave height at the beginning of the canopy is Hs0 = 3.7 cm and the water depth is 0.685m. In our
investigation, we focus solely on the thickest artificial vegetation blades and treat them as rigid bars.
The vegetation blades were 0.26m long and 4mm wide with a density of 2264 blades/m−2.

The wave decay coefficient ki predicted by our analytical model aligned with the experimental data,
exhibiting a slight underestimation. See the left plot in Fig. 2. The discrepancy could potentially arise
from skin friction along the glass sidewalls and the flume floor. The effect of the inertia forces is also
investigated by using added mass coefficients CM = 0 and 1. A constant drag coefficient CD = 1.95 is
assumed. CM = 1 leads to a slightly smaller damping coefficient ki. The wave spectrum at x = 50m,
approximately 24 peak-wave lengths into the canopy, is compared with that of the unattenuated waves
at x = 0m in the right plot of Fig. 2. Significant wave attenuation is observed for the considered wave
condition and canopy. The accumulated effect of the inertia forces can also be seen, which tends to
reduce the wave attenuation. More results will be shown in the workshop.
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Figure 2: (left) Comparison of wave decay coefficient ki at x = 0 where the canopy starts. (right)
Initial wave spectrum and decayed wave spectra at x = 50m. Note that when CM = 0, the present
model will be reduced to the one given in [2]. CD = 1.95 for all frequencies.
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