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Highlights

Using modes, the solution for wave forcing of multiple floating piezelectric plates is found.
An energy balance relation is derived from first principles, and a numerical simulation is
performed in the time domain.

1 Introduction

The efficient extraction of energy from ocean waves remains an ongoing challenge despite
the large amount of energy available. Many different designs of wave energy converters
(wec) have been proposed. Recently, there has been significant interest in wec that uses
flexure to convert energy starting with Renzi (2016). Recent work includes Zheng et al.
(2021), Collins et al. (2021), Zheng et al. (2022). The key to modelling the absorption
of energy from flexure is to include an imaginary part in the stiffness in the frequency
domain formulation. This appears for piezoelectric wave energy converters, for example.
We consider here a solution which is based on the modal expansion and the calculation
of the added mass and damping. This method is more standard in ocean engineering and
allows the application of well-known methods and computational techniques. We also
derive from first principles an energy absorption equation.

2 Equations of motion

We are modelling an elastic plate floating on the water surface that consists of layers
of material, some of which are piezoelectric, following the work of Renzi (2016). This
leads to a formulation in which the plate has complex stiffness. The imaginary part
of this stiffness corresponds to the absorption of energy proportional to bending. The
exact form of this energy removal is not essential; for example, the current formulation is
identical to that for viscoelastic plates. Water is assumed to be homogeneous, inviscid,
and incompressible, and its motion is irrotational and time-harmonic with an angular
frequency ω. Therefore, the water velocity field is defined as

Φ(x, z, t) = Re{ϕ(x, y, z)e−iωt}, (1)

where Re denotes the real part, t is time, and the scalar function ϕ is a complex-valued
velocity potential. The displacement of the plate is w(x, y). The velocity potential



satisfies Laplace’s equation and the impermeable-bed condition. Except under the plate,
the free surface condition is ∂zϕ = αϕ where α = ω2/g.

Assuming the plate remains in contact with the water, ϕ is coupled w by

∂zϕ = αw, and ϕ = w + (βr + iβi)∂
4
xw − αγw, (2)

for −L < x < L (under the plate) and z = 0. Here γ is the mass per unit area of the
plate scaled with respect to the water density, and β = βr + iβi is the complex rigidity of
the plate scaled with respect to the water density. We assume free boundary conditions
∂2
xw = ∂3

xw = 0. Figure 1 shows a schematic diagram of the problem.
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Figure 1: Schematic diagram showing the equations of motion.

The plate movement is expanded in the modes of free vibration. This method is
standard in ocean engineering, but it is not widely applied to wave energy conversion. The
method does not require a solution of a compact dispersion equation like eigenfunction
matching, and it is much more general and flexible in its application. The expansion is

w(x) =
∞∑
j=1

ujwj(x), (3)

with coefficients uj, where the modes wj, j = 1, 2, . . . , satisfy the eigenvalue problem for
the biharmonic operator,

∂4
xwj = µ4

jwj, for − L < x < L, (4)

together with the free-edge conditions (or other conditions such as clamped), where µ4
j are

the eigenvalues numbered in ascending order of their magnitude. The modes represent
the free vibrational modes of the plate in vacuo. We form an orthonormal basis from
these modes. By linearity, the velocity potential is expanded as

ϕ(x, z) = ϕin(x, z) + ϕdi(x, z)−
∞∑
j=1

ujϕ
ra
j (x, z), (5)

where ϕin is the incident wave. We solve for the diffracted ϕdi and radiation potentials
ϕra
j , using a Green function. A linear system for the modal weights is(

K+C− αM− ω2A(ω)− iωB(ω)
)
u = f(ω). (6)



Here K, M and C are stiffness, mass, and hydrostatic-restoring matrices, respectively.
They are given by

K = ⌈βµ4
j⌋j, M = γI, and C = I, (7)

where ⌈ci⌋i denotes a diagonal matrix with diagonal entries ci, and I is the identity matrix.
Moreover, the elements of the real-valued added mass matrix A = [Aij]ij and real-valued
damping matrix B = [Bij]ij are defined as

ω2Aij + iωBij = −
∫ L

−L

ϕra
j wi dS, (8)

and the elements of the forcing vector f = [fi]i are given by

fi =

∫ L

−L

(
ϕin + ϕdi

)
wi dS. (9)

2.1 Multiple plates

We extend this formulation to the case of two plates. A linear system for the modal
weights is obtained as before((

K 0
0 K

)
+

(
C 0
0 C

)
− α

(
M 0
0 M

)
− ω2

(
A11 A12

A21 A22

)
− iω

(
B11 B12

B21 B22

))(
u1

u2

)
=

(
f(ω)1
f(ω)2

)
,

(10)
where K, M, and C are as previously and the added mass and damping elements are

ω2Amn
ij + iωBmn

ij = −
∫ L

−L

ϕra
jnwim dS, (11)

and the elements of the forcing vector f = [fi]j are given by

fn
i =

∫ L

−L

(
ϕi + ϕdi

)
win dS. (12)

where m and n are indices for the two plates.

3 Energy Balance

The system is subject to incident wave energy and radiated and transmitted energy. We
can derive the energy balance by considering the following integral∫∫

Ω

ϕ∗∆ϕ− ϕ∆ϕ∗dS. (13)

This leads to

cg
(
1− |R|2 − |T |2

)
=

1

ω

∫ L

x=−L

Im(β)
∣∣∂2

xw
∣∣2 dx, (14)

where cg = 1
2ω

(tan(kh) + kh sec(kh)2) is the group velocity. The right-hand side is the
power absorption from the flexible plate while the left-hand side is the rate of energy
loss at infinity, i.e. the difference between the incident wave power and the transmitted
and reflected wave power. This matches the formula in Renzi (2016) derived from the
piezoelectric equations.



4 Results and Conclusion

An example simulation in the time domain is given in Figure 2 showing energy absorption.
The numerical method can be seen to be well suited to analyse piezoelectic wec. More
examples will be presented in the workshop.
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Figure 2: Time dependent motion for two floating elastic plates subject to an incident
wave pulse. The top figures are for non-energy absorption β = 10 and the bottom is for
energy absorption β = 10− 2i. The absorption of energy is clearly apparent.
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