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Introduction 
The second order interactions of the floating rigid body with water waves have been widely studied in the past, and the 

consistent theoretical model was agreed within the community ([1],[2],[3],[4]). The case of flexible body has been studied 

seldomly and, to the author’s knowledge, there is no consistent theoretical formulation which has been proposed in the 

literature. Here we try to do that. 

Notations and coordinate systems 

We introduce the compact matrix notations where [𝑨] is used to denote the 𝑛 × 𝑚 matrix with the elements 

𝐴𝑖𝑗  , (𝑖 = 1, 𝑛 ; 𝑗 = 1,𝑚) and, any vector quantity 𝒂 = 𝑎𝑥𝒊 + 𝑎𝑦𝒋 + 𝑎𝑧𝒌 , is written as a single column matrix {𝒂}. At the 

same time, to each vector quantity, the skew symmetric matrix [𝒂] is associated so that the scalar and vector product of two 

vectors {𝒂} and {𝒃} can be written as a classical matrix product: 𝒂 ∙ 𝒃 = {𝒂}𝑇{𝒃} ,   𝒂 ∧ 𝒃 = [𝒂]{𝒃}. 
When formulating the wave body interaction, several coordinate systems need to be defined. Most often, in addition to the 

inertial (earth fixed) coordinate system (𝑥, 𝑦, 𝑧), the coordinate system fixed to the body (𝑥′, 𝑦′, 𝑧′) is introduced, as shown 

in Figure 1. The earth fixed coordinate system is usually chosen to have an arbitrary origin fixed in space, while the body 

fixed coordinate system is commonly chosen to be fixed at the body center of gravity: 

 

  
 

Figure 1: Rigid (left) and flexible (right) body motion and the different coordinate systems. 

 

Any vector quantity 𝒃 can be expressed in either earth fixed or body fixed coordinate system. The two sets of coordinates 

are related to each other by the transformation matrix [𝑨], so that for any vector quantity {𝒃} we can write {𝒃} = [𝑨]{𝒃′} 
where it should be clearly understood that both {𝒃} and {𝒃′} represent the same vector in space. The transformation matrix 
[𝑨] is the critical parameter in the analysis of the nonlinear body motion and the instantaneous body rotation vector {𝛀′} is 

related to the transformation matrix by [𝛀′] = [𝑨]𝑇[�̇�]. The transformation matrix can be chosen in many different ways 

(Euler angles, quaternions, Rodriguez formula …) and here the Euler angles with convention (321) are used and the 

description of the problem is made relative to the body fixed coordinate system. 

Second order theory 
When formulating the second order problem there are different technical issues to be considered and the following four are 

probably the most important: description of the body motions, dynamic equilibrium equation, evaluation of the loads and 

the solution of the Boundary Value Problems (BVP) for the velocity potentials. We consider each of them explicitly below. 

Instantaneous position of the body 

The motion of the flexible body is described by the following position, velocity, and acceleration vectors: (e.g. see [5]) 

 
{𝒓} = {𝒓𝐺} + [𝑨]{𝒖

′}  

   
{𝒗} = {𝒗𝐺} + [𝑨][𝛀

′]{𝒖′} + [𝑨]{�̇�𝑓
′ }  

   
{𝒂} = {𝒂𝐺} + [𝑨][𝛀

′][𝛀′]{𝒖′} + [𝑨][�̇�′]{𝒖′} + 2[𝑨][𝛀′]{�̇�𝑓
′ } + [𝑨]{�̈�𝑓

′ } (1) 
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The local position vector {𝒖} is decomposed in two parts {𝒖} = {𝒖𝑟} + {𝒖𝑓} = [𝑨]{𝒖0} + [𝑨]{𝒖𝑓
′ } so that the rigid body 

case is obtained by simply putting {𝒖𝑓
′ } = 0. It is very important to note that the body deformations are defined relative to 

the body fixed coordinate system, which is located in the body center of gravity, and which moves following the rigid body 

motions only. This is the so-called Floating Frame of Reference (FFR) formulation of the flexible body dynamics as 

described in Shabana [5]. In the general case, the body deformation vector {𝒖𝑓
′ } can be arbitrarily large, but here it is 

assumed to be small and is represented as a sum of the 𝑁𝑓 modal contributions: 

 

{𝒖𝑓
′ (𝒖0, 𝑡)} =∑𝜒𝑓𝑖(𝑡){𝒉0𝑓𝑖

′ (𝒖0)}

𝑁𝑓

𝑖=1

= [𝓱0𝑓
′ ]{𝝌𝑓} (2) 

 

where {𝒉0𝑓𝑖
′ } is the space dependent modal displacement and 𝜒𝑓𝑖(𝑡) its time dependent amplitude. 

When compared to rigid body, the flexible body case, requires very careful description of the body instantaneous position 

the body normal vector and the elementary volume, which are modified by body deformations. For that purpose, it is 

convenient to introduce the notion of the deformation gradient [𝑭] which is defined relative to body fixed coordinate system: 

 

[𝑭] = [𝑰] + [∇𝒖𝑓
′ ]     ,     [∇𝒖𝑓

′ ] =

[
 
 
 
 
 
 
 
𝜕𝑢𝑓𝑥′

′

𝜕𝑥′

𝜕𝑢𝑓𝑥′
′

𝜕𝑦′

𝜕𝑢𝑓𝑥′
′

𝜕𝑧′

𝜕𝑢𝑓𝑦′
′

𝜕𝑥′

𝜕𝑢𝑓𝑦′
′

𝜕𝑦′

𝜕𝑢𝑓𝑦′
′

𝜕𝑧′

𝜕𝑢𝑓𝑧′
′

𝜕𝑥′

𝜕𝑢𝑓𝑧′
′

𝜕𝑦′

𝜕𝑢𝑓𝑧′
′

𝜕𝑧′ ]
 
 
 
 
 
 
 

 (3) 

 

With these notations, the normal vector and the elementary volume can be written as: 

 

{𝒏′}𝑑𝑆 = ‖𝑭‖([𝑭]−1)𝑻{𝒏0}     ,     𝑑𝑉 = ‖𝑭‖𝑑𝑉0 (4) 

 

This means that the following expressions can be deduced up to order 𝑂 ((𝒖𝑓
′ )
2
)  : 

 

{𝒏′}𝑑𝑆 = (1 + ∇𝒖𝑓
′ − [∇𝒖𝑓

′ ]
𝑇
+ [𝐐]𝑇) {𝒏0}𝑑𝑆0     ,     𝑑𝑉 = (1 + ∇𝒖𝑓

′ + Tr[𝐐])𝑑𝑉0 (5) 

 

where Tr[ ∙ ] denotes the trace of the matrix, and the matrix [𝐐]𝑇  is given by: 

 

[𝐐]𝑇 = [{
𝜕𝒖𝑓

′

𝜕𝑦′
∧
𝜕𝒖𝑓

′

𝜕𝑧′
} {

𝜕𝒖𝑓
′

𝜕𝑧′
∧
𝜕𝒖𝑓

′

𝜕𝑥′
} {

𝜕𝒖𝑓
′

𝜕𝑥′
∧
𝜕𝒖𝑓

′

𝜕𝑦′
}] (6) 

Dynamic equilibrium equation 

The nonlinear motion equation can be deduced in the following compact form (e.g. see [5]): 

 

[𝓜′]{�̈�′} + {

{0}

{0}

[𝑲𝑓𝑓]{𝝌𝑓}
} = {𝓕′} − {𝓠′} (7) 

 

where [𝓜′] is the inertia matrix, [𝑲𝑓𝑓] is the structural stiffness matrix for the flexible modes, {𝓕′} is the external loading 

vector and {𝑸𝑣𝑖
′ } are the quadratic velocity inertia vectors. 

 

[𝓜′] = [

[𝒎] [0] [0]

[0] [𝑰𝜃𝜃
′ ] [𝑰𝜃𝑓

′ ]

[0] [𝑰𝜃𝑓
′ ]

𝑇
[𝑰𝑓𝑓
′ ]

],   {�̈�′} = {

{(�̈�𝐺)
′}

{�̇�′}

{�̈�𝑓}

},   {𝓕′} = {

{𝑭′}

{𝑴′}

{𝑭𝑓
′ }
},   {𝓠′} = {

{𝑸𝑣𝑅
′ }

{𝑸𝑣𝜃
′ }

{𝑸𝑣𝑓
′ }

} (8) 

External loads 

In the present context, the total external loading {𝓕′} is the sum of the gravity {𝓕𝑔′} and the pressure contribution {𝓕ℎ
′
}. It 

is important to note that the gravity force is independent of the body instantaneous position, and it always acts in the 

direction of the acceleration of gravity. On the other hand, the direction of the pressure forces is defined by the normal 

vector on the wetted body surface so that its direction changes in time. These two facts have important consequences on 

the description of the external loading in the respective coordinate systems (earth fixed and body fixed). 

Here we introduce the compact notations, so that we can write for the generalized loading, relative to body fixed coordinate 

system, the following expressions: 
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{𝓕𝑔′} = −𝑔∭ {

[𝑨]𝑇

[𝒖′][𝑨]𝑇

{𝒉𝑓𝑖
′ }[𝑨]𝑇

} {𝒌}𝜌𝑚𝑑𝑉
𝑉

     ,     {𝓕ℎ
′
} = ∬ 𝑃{ℕ′}𝑑𝑆

𝑆𝐵

     ,    {ℕ′} = {

{𝒏′}

[𝒖′]{𝒏′}

{𝒉𝑓𝑖
′ }{𝒏′}

} (9) 

 

Within the potential flow theory, which is adopted here, the external pressure 𝑃 is given by the Bernoulli’s equation and, 

for the sake of clarity, it is further decomposed into its dynamic and the hydrostatic part: 

 

𝑃 = −𝜚 [
∂Φ

𝜕𝑡
+
1

2
(∇Φ)2 + 𝑔𝑧] = 𝑃𝑑 − 𝜚𝑔𝑧 (10) 

Linearization 
Within the linearization process, all the physical quantities, either scalar 𝑞′ or vector {𝒒′}, are first developed into 

perturbation series with respect to small parameter 𝜀 (wave steepness in the present case) and we can formally write: 

 

𝑞′ = 𝑞0
′ + 𝜀𝑞′(1) + 𝜀2𝑞′(1) + 𝑂(𝜀3)   ,      {𝒒′} = {𝒒0

′ } + 𝜀{𝒒′(1)} + 𝜀2{𝒒′(1)} + 𝑂(𝜀3) (11) 

 

In parallel, the Taylor series expansion is used to express the quantities at their instantaneous position as a function of their 

values at rest. In the case of flexible body, in addition to the rigid body displacements, the body deformations need to be 

accounted for so that the Taylor series expansion, relative to the body fixed coordinate system, can be written as: 

 

𝑞′ = (1 + 𝜀{𝒖𝑓
′ }∇)𝑞0

′    ,      {𝒒′} = (1 + 𝜀{𝒖𝑓
′ }∇){𝒒0

′ }   ,     { 𝒖𝑓
′ }∇= 𝑢𝑓𝑥′

′ 𝜕

𝜕𝑥′
+ 𝑢𝑓𝑦′

′ 𝜕

𝜕𝑦′
+ 𝑢𝑓𝑧′

′ 𝜕

𝜕𝑧′
 (12) 

 

One of the most important quantities, in the present context, is the transformation matrix which is decomposed as follows: 

 

[𝑨] = [ 𝐈 ] + 𝜀[𝑨(1)] + 𝜀2[𝑨(2)] + 𝑂(𝜀3) (13) 

 

where [ 𝐈 ] denotes the identity matrix (all terms zero except the diagonal elements equal to 1) and, whatever the convention 

which is used for the definition of the transformation matrix, we can write: 

 

[𝑨(1)] = [𝜽(1)]     ,     [𝑨(2)] = [𝜽(2)] −
1

2
([𝑯]𝑆 + [𝑯]𝐴𝑆) = [𝜽

(2)] −
1

2
[𝓗] (14) 

 

where [𝑯]𝑆 is the symmetric matrix given by [𝑯]𝑆 = −[𝜽(1)][𝜽(1)] and [𝑯]𝐴𝑆 is the skew symmetric matrix which depends 

on the convention which is used for the definition of [𝑨]. 

Body motions/deformations 

The main unknowns of the problem are the time dependent amplitudes of the different modes of motion, and we decompose 

them as follows: 

 

{𝝃′} = 𝜀{𝝃′(1)} + 𝜀2{𝝃′(2)} + 𝑂(𝜀3) = 𝜀 {

{(𝒓𝐺)
′(1)}

{𝛀′(1)}

{𝝌𝑓
(1)}

} + 𝜀2 {

{(𝒓𝐺)
′(2)}

{𝛀′(2)}

{𝝌𝑓
(2)}

} + 𝑂(𝜀3) (15) 

 

It should also be noted that the rotational velocity vector {𝛀′} is usually represented as a function of the time derivatives of 

the instantaneous rotational angles (Euler angles here) and we can write: 

 

{𝛀′(1)} = {�̇�(1)}     ,     {𝛀′(2)} = {�̇�(2)} + [𝐆′(1)]{�̇�(1)} (16) 

 

The matrix [𝐆′(1)] follows from the fact that the rotational velocity vector {𝛀} and the time derivatives of the instantaneous 

rotation angles are related to each other by {𝛀}  = [𝐆]{�̇�}. The “conversion” matrix [𝐆] depends on the convention which 

is used for the definition of the transformation matrix [𝑨]. With this in mind, any other local quantity at the body (local 

position, mode shape, local displacement, local velocity; normal vector, elementary volume …) can be deduced. 

External loading 

The perturbation series for the external loads is formally written as: 

 

{𝓕′} = {𝓕𝑔′} + {𝓕ℎ′} = {𝓕𝑔′(0)} + {𝓕ℎ′(0)} + 𝜀({𝓕𝑔′(1)} + {𝓕ℎ′(1)}) + 𝜀2({𝓕𝑔′(2)} + {𝓕ℎ′(2)}) (17) 

 

The different components are obtained, after quite heavy developments, in the following form: 
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{𝓕𝑔′(0)} = −𝑔∭ {

1
[𝒖0]

{𝒉0𝑓𝑖
′ }

𝑇
} {𝒌}𝜌𝑚𝑑𝑉0

𝑉0

 (18) 

   

{𝓕𝑔′(1)} = −𝑔∭

{
 
 

 
 [𝑨(1)]

𝑇
+ 𝑉′(1)

[𝒖0] ([𝑨
(1)]

𝑇
+ 𝑉′(1)) + [𝒖𝑓

′(1)]

{𝒉0𝑓𝑖
′ }

𝑇
([𝑨(1)]

𝑇
+ 𝑉′(1)) + {𝒉𝑓𝑖

′(1)}
𝑇

}
 
 

 
 

{𝒌}𝜌𝑚𝑑𝑉0
𝑉0

 (19) 

   

{𝓕𝑔′(2)} = −𝑔∭

{
 
 

 
 [𝑨(2)]

𝑇
+ 𝑉′(2)

[𝒖0] ([𝑨
(2)]

𝑇
+ 𝑉′(2)) + [𝒖𝑓

′(1)] ([𝑨(1)]
𝑇
+ 𝑉′(1)) + [𝒖𝑓

′(2)]

{𝒉0𝑓𝑖
′ }

𝑇
([𝑨(2)]

𝑇
+ 𝑉′(2)) + {𝒉𝑓𝑖

′(1)}
𝑇

([𝑨(1)]
𝑇
+ 𝑉′(1)) + {𝒉𝑓𝑖

′(2)}
𝑇

}
 
 

 
 

{𝒌}𝜌𝑚𝑑𝑉0
𝑉0

 (20) 

   

{𝓕ℎ′(0)} =  −𝜚𝑔∬ 𝑧(0){ℕ(0)}𝑑𝑆
𝑆𝐵0

 (21) 

   

{𝓕ℎ′(1)} =  ∬ (𝑃(1) − 𝜚𝑔𝑧(1)){ℕ(0)}𝑑𝑆
𝑆𝐵0

 (22) 

   

{𝓕ℎ′(2)} =  ∬ (𝑃(2) − 𝜚𝑔𝑧(2)){ℕ(0)}𝑑𝑆
𝑆𝐵0

+
1

2
𝜚𝑔∫ (Ξ(1) − 𝑧(1))

2

𝐶𝐵0

{ℕ(0)}

cos 𝛾
𝑑𝐶 (23) 

 

where the compact normal vector is given by: 

 

{ℕ′(0)} = {

{𝒏0}

[𝒖0]{𝒏0}

{𝒉0𝑓𝑖
′ }

𝑇
{𝒏0}

},   {ℕ′(1)} =

{
 
 

 
 {𝒏′(1)}

[𝒖0]{𝒏
′(1)} + [𝒖𝑓

′(1)
]{𝒏0}

{𝒉0𝑓𝑖
′ }

𝑇
{𝒏′(1)} + {𝒉𝑓𝑖

′(1)}
𝑇
{𝒏0}}

 
 

 
 

,   {ℕ′(2)} =

{
 
 

 
 {𝒏′(2)}

[𝒖0]{𝒏
′(2)} + [𝒖𝑓

′(1)
]{𝒏′(1)} + [𝒖𝑓

′(2)
]{𝒏0}

{𝒉0𝑓𝑖
′ }

𝑇
{𝒏′(2)} + {𝒉𝑓𝑖

′(1)}
𝑇

{𝒏′(1)} + {𝒉𝑓𝑖
′(2)}

𝑇
{𝒏0}}

 
 

 
 

 

 

The line integral over the mean waterline 𝐶𝐵0  which occurs in (23), follows after careful integration over the instantaneous 

wetted body surface which should be decomposed into its mean and the time varying part, as shown in Figure 2 

 

 
 

Figure 2: Instantaneous wetted body surface and its separation into the different integration surfaces. 

Boundary Value Problems for velocity potentials 

Due to lack of space, the BVP’s for the different velocity potentials are not explicitly discussed here but will be at the 

workshop. We just mention that they remain very similar to rigid body case provided that the body boundary condition 

should account for the body velocity, and the change of the normal vector, which are induced by the body deformations. 
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