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Nonlinear wave diffraction by an uneven viscoelastic seafloor

Vasily K. Kostikov!, Masoud Hayatdavoodi®>?, R. Cengiz Ertekin 2*

!Department of Applied Mathematics, Xi’an Jiaotong-Liverpool University, Suzhou 215123, China
2College of Shipbuilding Engineering, Harbin Engineering University, Harbin 150001, China
3 School of Science and Engineering, University of Dundee, Dundee DD1 4HN, United Kingdom
4 Ocean and Resources Engineering Department, University of Hawaii, Honolulu, Hawaii 96822, USA
E-mail: vasily.kostikov@zjtlu. edu.cn

This abstract introduces an extension to the study on wave interaction with an elastic sheet on a vis-
coelastic foundation which we presented at the previous workshop [1]. Here we propose to investigate
nonlinear wave interaction with a deformable seafloor lying on an uneven bottom topography, represent-
ing the submerged shelf, ramp or periodic ripples formed by tidal waves on the ocean floor. Muddy
sea regions are commonly observed along the shores in the coastal areas where water depth can vary
significantly [2, 3]. Therefore, this study is a step forward to a more realistic models of wave damping
by deformable seafloors. Many mathematical theories have been proposed in the past, treating the soft
and movable seabeds as a highly-viscous fluid with various complemetary properties including elasticity,
plasticity and porosity [4, 5, 6]. Alternatively, the fluid-bottom interface can be replaced by a thin elastic
plate and the restoring force of mud can be modelled by the action of spring and dampers. This approach,
first proposed a decade ago [7, 8], remains mostly unexplored in spite of its wide applicability to other
problems like wave interaction with floating ice or large elastic structures. This study is an attempt to
contribute to the development of this model as applied to the problems of wave-mud interaction.

STATEMENT OF THE PROBLEM

The equations governing the motion of the fluid are provided by the nonlinear Green-Naghdi theory (GN
hereafter), originally developed from the theory of directed fluid sheets [9]. This theory can be applied
to a wide class of problems, including wave interaction with floating structures and propagation of water
waves over an arbitrary seafloor, see e.g. [10]. The GN equations are classified based on the level of
the functions used to prescribe the distribution of the vertical velocity along the water column. In the
Level I GN theory, also known as the restricted theory, the vertical component of fluid particle velocity is
a linear function of the vertical coordinate, which results in the horizontal velocities being invariant along
the depth of the fluid. This single assumption makes the Level I GN equations feasible for description
of fairly long waves or waves in shallow waters.
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Figure 1: Schematics of wave interaction with a deformable elastic sheet lying on a viscoelastic foundation.

The flow of incompressible and inviscid fluid is considered in a two-dimensional Cartesian reference
frame in which the x axis is pointing to the right, the y axis is directed upward, and its origin is located
on the undisturbed free surface of the fluid (see figure 1). The governing equations are given by mass
and momentum conservation laws in dimensionless form after using the density of the fluid p, the fluid
depth at the wavemaker hy and acceleration due to gravity g as a dimensionally independent set:
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Here u(z,t) is the depth-averaged horizontal fluid velocity, n(x,t) is the free surface elevation measured
from the still-water level, a(x,t) is the deformation of the bottom measured from its stationary position,
h(zx) is a predetermined partly-smoothed function describing the bottom topography. In our notation,
subscript after comma denotes the partial differentiation with respect to the given variable and superim-
posed dot specifies the total time derivative. In this study, an uneven rigid bottom is partly covered by an
elastic sheet which is supported by a uniform system of springs and dampers. The condition of balance
of hydrodynamic pressure predicted by the GN theory on the bottom and elastic pressure induced by
deformation of the elastic sheet, complements the system of mass and momentum equations (1)-(2):
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Here, m and D are the unit mass and flexural rigidity of the sheet, b and x are the viscous damping and
stiffness of the elastic foundation per unit area, respectivey.

A piecewise-smooth function of a variable topography can be chosen arbitrarily and represents either
a segment of an inclined bottom, or a wavy bottom-surface, or a protruding shelf (n = 1):
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By virtue of the GN equations, the exact nonlinear kinematic and dynamic boundary conditions at
the free surface and the impermeability condition on the bottom, are already satisfied by the system of
equations (1) and (2). In order to construct the solution, valid in the entire fluid domain, the appropriate
jump and matching conditions should be imposed across the lines (r = x1, © = x3), dividing the regions
with rigid and deformable bottoms. Motivated by the physics of the problem, we require the continuity
of the free surface elevation and fluid pressure on the seafloor, predicted by the GN theory (see [10]):
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The elastic sheet on the bottom is assumed to be fixed at the edges and hence the deformations,
bending moments and shear stresses should vanish at the discontinuity curves:
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METHOD OF SOLUTION

The set of equations (1)-(3) for the fluid flow above an uneven and deformable seafloor, complemented
by boundary conditions (5)-(6), are solved simultaneously in the entire flow domain. The numerical
solution is found with the use of a finite-difference technique and the modified Euler’s time-stepping
method. In our previous study [1], we developed an approach to deal with the system of equations (1),
(2) and (3) numerically, when the wave propagates over an infinite deformable sheet lying on the even
bottom, i.e. h(z) = 0. By an appropriate transformation of the system (1)-(3), the second-order full
time derivatives of the free surface elevation, can be eliminated from the momentum equation (2) and
pressure balance equation (3). As a result, the equations containing the time derivativies of the unknown
horizontal velocity u(z,t) and the deformations of the bottom «(z,t) can be derived. In the case of an
uneven bottom, the resulting equations include spatial derivatives of the given function h(z) and attain
the following form, suitable for numerical modeling:
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where functions Y and Y, including only the spatial derivatives of the unknown functions, account for
the effects of the free surface and deformable bottom, respectively:
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Here ¢ = n — h — « denotes the thickness of the fluid sheet. The system (7)-(8) is solved numerically by
use of the iterative method and Gaussian elimination algorithm at each iteration. Once the horizontal
velocity u and bottom deformation « are calculated, the free surface elevation n on each time step is
obtained from the mass continuity equation (1).

WAVE DIFFRACTION

The hydrodynamic pressure force induced by the travelling wave on the free surface causes the deflection
of the sheet on the bottom and invokes the dynamic response of the attached springs and dampers.
Due to the interaction with the deformable seafloor, the free surface wave should experience significant
diffraction and attenuation. Two factors have an effect on the wave transformation: deformations of
the viscoelastic seafloor and unevenness of the rigid bottom. In this abstract, the uneven bottom is
represented by a constant slope starting at the wavemaker, specified by a constant a in equation (4).
The discussion of other types of bottom rheology will be presented at the workshop.

Fig. 2 compares the profiles of a solitary wave at a fixed moment of time for different bottom
conditions. Compared to the rigid bottom case, there is a considerable decrease of the wave amplitude
and propagation speed resulting from the energy exchange between the fluid flow and the deformable
seafloor. The wave looses its energy gradually with propagated distance by the work done on deflecting
the seafloor, which by turn creates a constantly changing disturbance for the wave flow. The formation
of a secondary wave in the wake of the wave front can be also attributed to the elastic deformations of
the seafloor. The presence of a slope compensates for the decrease of the wave amplitude and further
reduces the wave propagation speed.

a=0 a = 0.005
0.3 ; : ‘ 0.3 ‘ ‘ _,_
-=rigid bottom I
—deformable bottom N
0.27 | 027
<
0.17 0.17
0 0
40 50 60 70 80 40 50 60 70 80
X X

Figure 2: Snapshots of free surface elevation at time ¢ = 100 for a solitary wave (A = 0.25) propagating over a
rigid and deformable (m = 0.05, D = 0.1, K = 5, b = 0.05) seafloors with different inclination parameter a.

For periodic waves, the change of propagation speed reveals itself in modulation of the wavelength,
which is illustrated in Figs. 3 and 4. Fig. 3 shows snapshots of the free surface for the cnoidal wave
propagating over the rigid and deformable seafloors with and without inclination angle. The observed
decrease of the wavelength caused by deformations of the seafloor is intensified by the presence of a
slope. The wave propagating above the sloping seafloor is steeper as compared to that above the flat
seafloor, in both rigid and deformable configurations. The resulting pattern of the wave trasnformation
shall depend on different factors, including mass and rigidity of the elastic sheet, stiffness and damping
coefficients of the viscoelastic foundation, parameters of an uneven bottom, as well as the incoming free



surface wavelength and the wave height. Fig. 4 shows the ratio of the diffracted wavelength, \*, to the
incoming wavelength, A, against stiffness and damping coefficients of the viscoelastic foundation with and
without a slope. The mutual effects of the bottom inclination angle and the properties of the viscoelastic
foundation on the wave diffraction characteristics are demonstrated to be minor. As shown in Fig. 4, the
wavelength is extremely sensitive to the variations of the stiffness and damping parameters and decreases
significantly as stiffness drops to the critical value.
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Figure 3: Snapshots of (a) free surface elevation and (b) bottom displacement at time ¢t = 125 for a cnoidal wave
(H = 0.25, A = 10) propagating over a rigid and deformable (m = 0.05, D = 0.1, k = 3, b = 0.2) seafloors with
different inclination parameter a.

1 (a) ‘ | (b)
0.95! 4095 o
< //”/ S
= 09 - 0.9 ~==---"
/<

0.85/ ] 0.85

0.8/ ‘ ‘ 0.8 ‘
4 6 8 10 0 5 10
b

K

Figure 4: Diffracted wavelength of a cnoidal wave (H = 0.25, A = 10) propagating over an elastic sheet (m = 0.05,
D = 0.1) on a viscoelastic foundation of variable (a) stiffness x (b = 0) and (b) damping coefficient b (k = 5) with
different inclination parameter a.
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