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Highlights

Equations relating the pressure at a horizontal seabed, the free-surface profile and the surface-
pressure are derived for two-dimensional irrotational steady water waves with arbitrary pressure
at the free surface. Special cases include gravity, capillary, flexural and wind waves.

1 Introduction

The recovery of pure gravity (i.e., with constant surface-pressure) irrotational steady waves
from bottom pressure gauges as a long been proposed. These methods either solve the problem
exactly or under various assumptions; see [1, 2, 3, 4] and the references therein for details.
Recently, it was shown that an exact recovery is also possible in presence of constant vorticity [5].
However, to the authors knowledge, the recovery of capillary, flexural and wind waves (among
many other situations of physical interest) has never been attempted. These phenomena involve
different non-constant surface-pressures that can be very complicated (especially for capillary
and flexural waves). Here, we describe a general recovery method valid for any surface-pressure,
allowing to recover both the surface-profile and the surface-pressure.

2 Equations of motion

In the frame of reference moving with a traveling wave of permanent shape, the flow beneath
the wave is a steady two-dimensional irrotational motion of an inviscid fluid. Let (x,y) be a
Cartesian coordinate system moving with the wave, x being the horizontal coordinate and y the
upward vertical coordinate and let (u(x,y), v(z,y)) be the velocity field in this moving frame.
We denote by y = —d, y = n(z) and y = 0 the equations of the bottom, of the free surface and
of the mean water level, respectively. The latter equation expresses that () = 0 for a smooth
(27 /k)-periodic wave profile n, where (-) is the Eulerian average operator over one period, i.e.

o = e de = 0 1)
o= 5 7ﬂ/knx x = 0.

For solitary and other aperiodic waves, the same averaging operator applies taking the limit
k — 0%. The flow is governed by the balance between the restoring gravity force, the inertia of
the system and a surface pressure. With constant density p > 0 and acceleration due to gravity
g > 0, the kinematic and dynamic equations are, for z € R and y € [—d;n(x)],

Uy + vy = 0, Uy — Uy = 0, u?+ 02 +2gy = —2p, (2a,b,c)

where p(x,y) denotes the physical pressure divided by the density and B is a Bernoulli constant.

The flat bottom and the wavy free surface being impermeable, we have v, = 0 and vs = ugn,
with 7, S dn/dx and where subscripts ‘b’ and ‘s’ denote, respectively, restrictions at the bottom
and at the free surface, e.g. up(z) = u(z,—d), vs(z) = v(x,n(z)). The pressure at the free



surface pg can be zero or a varying if, for instance, it models a prescribed surface (wind effect)
or capillary and flexural effects such that

(3)
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T being a surface tension coefficient and D a rigidity parameter (both divided by the fluid
density). We take (ps) = 0 without loss of generality, since (ps) can be absorbed into the
definition of the atmospheric pressure. Thus, from the definition (1) of the mean level, one gets
[2, 5]

B :<us2+vs2>:<u§>, (4)
yielding the, here important, relation (p,) = gd. Finally, equations (2a-b) imply that the
complex velocity w “u—ivisa holomorphic function of z L iy.

3 Equations for the free-surface and surface-pressure recoveries

The function (u — iv)? being holomorphic, its real and imaginary parts satisfy the Cauchy—
Riemann relations

Oy [uQ - UQ] — 0z [2uv] = 0, Oz [uQ - UQ] + 0y [2uv] = 0. (5a,b)

Integrating over the water column and using the boundary conditions, these relations yield

d [ dn d [Mu?—v*+B
— D — h —_ d , S _ = — 7(1 . 6 ,b
Pb—Ps—9 dx/duvy (ps+9m) = » 5 y (6a,b)
Taylor expansions around y = —d can be written
w? = 2 = cos|(y + d)3,] u = —2cos[(y + d)d] (py — gd), (7)
2uv = —sin[(y + d),] uf, = 2sin[(y + d)ds] (pr, — gd). (8)

Hence, with h Cd+ 1, we have

n
/ uvdy = [1 — cos(hdy)] (9;1 (pp — gd), (9a)
—d
n ,2_ ,2
|y = sin(ho) 03 (o 9, (90)
—d

so equations (6) yield

ps + gn = Oy cos(hOy) (9:;1 (pp — gd) = [cos(hdy) — ne sin(hdy)] (pp — gd), (10)
(B — ps — gn)ne = O sin(hd,) 0, (py, — gd) = [sin(hdy) + 1, cos(hdy)] (py, — gd). (11)

After one integration, equation (11) becomes
Bn — 5gn* = 9, (psne) = sin(hdy) 0, (py — gd). (12)
With the special surface pressure (3) we have

iz 7T 52 T 772
(1+n2) (1+n2) 2(1+n2)

95 (psi) = + constant,  (13)

where the integration constant must be determined by the mean level condition (1).



When ps = 0 (pure gravity waves), 1 can be obtained from py, solving the ordinary differential
equation (11) [2] or, more easily, solving the algebraic equation (12) [1]. When ps # 0 is a
function of x and/or 7, such as (3), in general (12) is a complicated highly-nonlinear high-order
integro-differential equation for 1 due to the term 9, 'psn, (see relation (13) for an example
of practical interest). This is not a problem for recovering the free surface n from the bottom
pressure pp, because the surface pressure pg can be eliminated between (10) and (11), yielding

B, = {(1—n7)sin[hdy] + 21, cos[hds] } (pn — ), (14)
or in complex form — introducing B(z) & py(z + id) — gd —
Bn, = (1-n7) Im{‘is} + 2, Re{‘is} , (15)

that is a (nonlinear) first-order ordinary differential equation for 1. Equation (15) being alge-
braically quadratic for 7, it can be solved explicitly for 7, thus one gets

Re{sizs} - nmlm{iss} = 1B+ %(3—2%3 (16)

Since the free surface is flat if the bottom pressure is constant (and since B > 0), the mi-
nus sign must be chosen. Moreover, the condition (4) rewritten in terms of 9 yielding B =

< ‘B - 2%3
Equation (16) is a priori not suitable if 7 is (nearly) not differentiable (limiting waves). It
is thus more efficient to solve its antiderivative

>, the average of the right-hand side of (16) is zero, so is the left-hand side.

2 Re{ﬁs} ~ K = 97} [B - ‘B—2‘4~35 ] (17)

where K is an integration constant and where Q(z) & gy (2 +id) with g (2) < 8,1 (py(2) — gd)
choosing (g) 2ot 0, so 0, Re{ﬁs} = Re{‘ﬁs} — Im{‘is} and <(1 + inx))53> = 0. The right-
hand side of (17) being the antideirative of a zero-average quantity, we conveniently choose
<8{1 [B — |B = 29, }> 200, hence K = 2 <Re{§s}>. Thus, a numerical resolution of (17)
does not require the computation of 7,, that is an interesting feature for steep waves.

The free-surface 7 being obtained after the resolution of (16) or (17), the surface-pressure
ps is obtained explicitly at once from (10)

ps = Oy Re{ﬁs} —gn = Re{‘is} — T Im{‘is} - gn (18)

Thus, as 7, ps is known modulo the Bernoulli constant B that is the only quantity left to be
determined. In order to fully recover both the free-surface and the surface-pressure, knowing
only the bottom pressure is not sufficient so at least one extra information is needed. We
consider here two possibilities of practical interest.

A first possibility is when we have access to one independent extra measurement, for instance
the mean velocity at the bottom (or elsewhere), the mean pressure somewhere at a point above
the seabed, the phase speed, the wave height, etc. In that case, the Bernoulli constant B is
chosen such that the recovered wave matches this measurement.

If no extra measurements are available, the free-surface can nevertheless be fully recov-
ered with the knowledge (or reasonable guess) of the physical nature of the surface-pressure,
for instance given by (3). The missing parameter can then be obtained minimising the error

< |ps, — pSt\z > between the recovered surface-pressure ps, obtained from (18) and the theoretical

surface-pressure pg, given, say, by (3).
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Figure 1: Recovery of a capillary-gravity wave with period L/d = 6, Froude number square B/gd = 1.01568
and Bond number 7/gd* = 1/3. (a): Bottom pressure treated as a “measurement” for the recovery procedure.
(b,c): Respectively, recovered surface pressure and profile (blue circles) versus the exact solution (red line).

4 Summary

We described a general method for recovery the surface-profile and the surface-pressure from
bottom-pressure measurements. An example of surface-profile and surface-pressure recoveries
is given in Figure 1; interested readers can find more details in [6]. The approach can be
generalised to flows with constant vorticity along the line of [5]. The approach can also be
further generalised to handle overturning waves, as described in [7].
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