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Highlights
• The flexural gravity wave interaction with an ice sheet having variable geometry
has been examined.

• An ice sheet with a Gaussian oscillatory pattern is investigated in the presence of
uniform current.

• Bragg resonating pattern is observed in reflection coefficient for very small values
of spreading parameter.

• The peak due to resonance experiences a leftward shift with an increase in the
depth Froude number and a rightward shift with an increase in the frequency of
oscillation.

• This study provides a comprehensive understanding of the effects of current speed,
the Bragg resonating phenomenon and the role of variable geometry in the ice sheet.

1 Introduction
Analysing the mathematical complexity of the interaction between elastic floating bod-
ies and free-surface gravity waves in an intermediate water depth is a mathematically
challenging problem for its important practical applications. Based on the existing data,
approximately one-fifth of the Earth’s oceans and seas are enveloped in ice. Thus, ice
sheets are the most extensively researched elastic floating bodies, giving rise to flexural
gravity waves when they interact with water waves. The presence of variable ice sur-
face along the northern shore of Ellesmere Island, located in Nunavut, Canada [Nekrasov
& MacAyeal (2023)], shows that the interaction between gravity waves and variable ice
sheets requires extensive examination. There is also presence of currents in the ocean
beneath the ice cover in several circumstances. These ocean currents can have a substan-
tial impact on the wave field. Consequently, it is pertinent and practically significant to
investigate the interaction between flexural gravity waves and an ice sheet with variable
geometry in the presence of current, which is the primary goal of this study. This study
could assist geologists and marine engineers in developing and maintaining ports and
harbour infrastructure. This paper attempts to investigate the problem of interaction
of flexural gravity waves with an ice sheet having variable geometry in the presence of
current within the framework of linear water wave theory. The theoretical results are
supported by the numerical computations for the real physical parameters involved.

2 Mathematical formulation
The horizontal wave motion beneath an elastic plate with variable geometry in an ocean
of finite depth h, with uniform ocean current U along the x-directional flow is considered
which is passing over an impermeable flat bottom. A Cartesian coordinate system (x, y)
is used to formulate the physical problem, with y standing for the vertical coordinate and



x for the horizontal coordinate. The plate is considered to be extended infinitely as x →
±∞. The floating thin elastic plate model [Fox & Squire (1991)] and potential flow theory
for the motion of water waves are used for the mathematical formulation of the problem.

Figure 1: Schematic Diagram

Furthermore, the undulated plate has
been expressed in the form of y = P (x),
where P (x) = εΓ(x), where Γ(x) signi-
fies the shape of variation in the plate,
which is a differentiable function hav-
ing compact support, i.e., Γ(x) → 0 as
|x| → ∞, the nondimensional number
ε(≪ 1) indicates the smallness of the
variation and y = 0 is the mean plate
position. The fluid is considered to be

inviscid and incompressible and flow is irrotational and time harmonic with frequency σ.
The Boundary value problem (BVP) in non-dimensionalised form for velocity potential
ϕ is given by ∂2ϕ
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with D =

D̃/ρgh4, Q = Q̃/ρgh2, δ1 = δ/ρh, D̃ = Ed3/[12(1 − v2)] denotes the flexural rigidity
of the ice sheet; E Young’s modulus; v Poisson’s ratio; δ = ρ1d is the unit mass; d the
ice-sheet thickness, which is considered to be very small; F is the depth Froude number;
ρ and ρ1 are the densities of fluid and ice sheet, respectively.
The elastic plate surface condition (2) can be written in the form
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on y = 0. (4)

In addition, the radiation condition is given by

ϕ(x, y) ∼

{
ϕI(x, y) + R̃ϕR(x, y), x → −∞,

T̃ ϕT (x, y), x → ∞,
(5)

where ϕI , ϕR and ϕT are the progressive wave solution, reflected wave solution, and
transmitted wave solution, respectively, with R̃ and T̃ , the unknown coefficients associ-
ated with the reflected and transmitted waves, respectively, which will be examined in
the following section.

3 Method of solution
Using perturbation technique, we can express ϕ, R̃ and T̃ as

ϕ = ϕ0 + εϕ1 +O(ε2), R̃ = εR +O(ε2), T̃ = 1 + εT +O(ε2) (6)



where ϕ0 = eik0xh(k0, y), with h(k0, y) =
cosh k0(y + 1)

cosh k0
, where k0 satisfies the dispersion

relation
D(k) = 0; (7)

where D(k) = (σ − k0F )2 −M(k0)k0 tanh(k0), M(k) = (Dk4 −Qk2 + 1− δpσ
2) ,

ϕ1, R and T are the first order velocity potential, reflection coefficient and transmission
coefficient respectively. Using equation (6) in equations (1), (2), (4) and (5), and com-
paring O(ε1) terms, we will obtain the first order BVP. Solving the first order BVP using
Fourier transform method, we obtain R and T as

R = i
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, and T = i
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, (8)

where β(ξ) =
[
k0(σ − k0F )2 tanh(k0)− k0M(k0)− k0(ξ − k0)V(ξ − k0)

]
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+ iξUV(ξ)Γ(ξ),
(9)

V(y) = (Dy4−Qy2+1), Γ(ξ) =

∞∫
−∞

Γ(x)e−iξx dx, and kr and kt are the roots of dispersion

relations (σ + krF )2 −M(kr)kr tanh(kr) = 0 and (7) respectively.

4 Numerical results
For the numerical computations, the values of D = 4.554, Q =

√
D and δp = 0.089 are

kept fixed unless stated otherwise.
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Figure 2: Reflection coefficient |R| versus σ for different (a) µ with λ = 0.1, a = 0.01 and
(b) λ with µ = 0.1 and a = 0.01.

Now consider a specific shape function of the variable geometry of the elastic plate as
given by

Γ(x) = ae−λx2

sin (2πµx) , −∞ < x < ∞, λ > 0, (10)

where a being the amplitude of the oscillation, λ is the spreading parameter, and µ is the
frequency of the oscillation.

Figure 2 illustrates the behaviour of first order reflection coefficient for different frequency
parameter µ (Figure 2(a)) and different spreading parameter λ (Figure 2(b)) in the ab-
sence of current. Figure 2(a) depicts the formation of a single harmonic peak for all
values of µ with the peak shifting towards right as the value of µ increases. Furthermore,



it is noted that the magnitude of reflection is increasing significantly with an increase in
the frequency of oscillation. This result provides significance for practical applications.
Figure 2(b) illustrates that there is formation of smooth Bragg resonating pattern as the
value of spreading parameter λ is decreased. Interestingly, the sharpness of the Bragg
resonating peak increases as λ decreases. Perhaps this might be because the sinusoidal
component of the plate variation dominates the Gaussian element as λ decreases, con-
tributing to the formation of the Bragg resonating pattern.

Figure 3 demonstrates the behaviour of first order reflection coefficient with respect
to different Froude numbers. It can be observed from Figure 3 that the magnitude
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Figure 3: Variation of reflection coefficient for
different Froude numbers F with λ = 0.1, a =
0.01 and µ = 0.1.

of the reflection coefficient is de-
creasing with an increase in Froude
number. Furthermore, as the
value of the Froude number F
increases, a leftward shift in the
Bragg resonating peak is observed.
The dispersion relation and wave
modes are altered by currents,
which may result in modifications
to the interference patterns that
support Bragg scattering.

5 Conclusion
The interaction of flexural gravity waves with an ice sheet having variable geometry in
the presence of current has been studied. The associated boundary value problem is
solved using perturbation technique followed by Fourier transform method. A particular
type of shape function, known as Gaussian oscillatory, is used to analyse the variable
geometry of the ice sheet. The reflection coefficient exhibits a uniform Bragg resonating
pattern for very low values of the spreading parameter. An increase in Froude number
results in a leftward shift in the Bragg resonating peak, while an increase in the frequency
of oscillation results in a rightward shift. The present study provides a comprehensive
analysis of the impact of current speed, the Bragg resonating phenomenon, and the
significance of variation in the ice sheet.
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