

Oil and gas decommissioning: opportunities for reuse and repurposing Prof. Catrinus Jepma

Final Conference for the MUSES project Brussels, 10 October 2018

Offshore potential of energy conversion

Two key options (except from platform electrification and gas-to-wire)

- 1. Use platform for conversion of nearby wind energy
- 2. Use platform for offshore CCS

Platform for conversion offshore wind energy

 Some curtailment economically optimal at current electrolyser prices

Platform use: Siemens Sylizer 300 electrolyser (10 MW)

- Cost price of 'grey' hydrogen: some €1 1.50/kg (but some 13 kg CO₂ footprint)
- Cost price of 'blue' hydrogen: ca €2.50/kg (informal information from Norwegian project)
- Cost price of 'green' hydrogen:
 - Onshore electrolysis: ca €3 4/kg
 - (by 2025 possibly **€2 3/kg**)
 - Offshore electrolysis (including savings on e-grid): €2 3/kg
 - (by 2025 possibly €1.50 2/kg)
- Note that an EU ETS allowance price increase by €1, implies an increase in the price of a kg of 'grey' hydrogen of about €0.01 only.
- So, a more effective allowance price development is probably not sufficient to in itself cover the price gap between 'grey' and 'blue'/'green' hydrogen; additional PAMs may be needed to speed up

• Caveats:

- Beginning learning curve
- Externalities difficult to quantify
- Rules, regulations and public acceptance issues unclear
- Positive aspects:
 - Potential game-changer / enabler
 - Various output options
 - Technologies well-known
 - Demand for 'green gas' growing

All power to platform for conversion

Look from a platform perspective while keeping all current external ROIs the same.

i.e. windfarm will always get market value for their wind

- Saving on electric cable monetized
- Savings on e-grid onshore also included
- €1- €1.75 hydrogen price kg
- Assumed green hydrogen price: €2 / kg

Sensitivity for: Size, price stochastics, externalities, old/new pipeline, efficiency electrolyser, learning curve, distance to shore, refurbishment costs

Steam Methane Reforming & CCS

- Location comparison of CCS + SMR:
 - 1. SMR + CC onshore \rightarrow CS offshore
 - 2. SMR + CCS offshore \rightarrow sell H₂ onshore
- Pre-combustion capture of CO₂
- Focus on CO₂-value chain excl.
 H₂

North Sea located well for CCS

Results – Cost-Price of Storing CO2

- Capture and storage costs are higher in the offshore SMR case, still the savings on CO2 pipelines from onshore to the platform could lead to a lower offshore cost-price
- Highest SMR capacity leads to ~1 Mt CO₂ captured and stored per year

Thank you for your attention

Catrinus J. Jepma

University of Groningen / Energy Delta Institute

c.j.jepma@rug.nl

Jepma & Van Schot (2017): On the economics of offshore energy conversion: smart combinations (<u>www.gasmeetswind.eu/wp-content/uploads/2017/05/EDI-North-Sea-</u> smart-combinations-final-report-2017.pdf)

Jepma, et al. (2018): Towards sustainable energy production on the North Sea – Green hydrogen production and CO2 storage: onshore or offshore? (available on request)

Key assumptions

Assumptions regarding financing

- inflation rate: 0%
- tax rate: 20%
- minimum required return on equity: 10%
- interest long-term private depth: 4.0%
- debt/equity ratio: 60/40
- opportunity cost of capital: 7,6% (WACC)
- year of starting investments: 2025
- year of starting operation: 2026
- operating period 10 years
- oxygen is not valued

Assumptions regarding energy transport

- CAPEX E-grid 320 MW shore wind farm (near G17): €147 million
- CAPEX E-grid 77 MW shore wind farm (near D18): €38.5 million
- Capex new compressor: €2.802/kWh
- Annual maintenance fee compressor: 3% CAPEX
- CAPEX PSA extraction station: €1,000 per 1 Nm³/h
- OPEX PSA extraction station: 5% CAPEX
- CAPEX dedicated hydrogen pipeline: €450,000-625,000/km, depending on diameter
- OPEX dedicated hydrogen pipeline: 2% CAPEX
- Transport costs hydrogen in existing network: €16.50/1000m³

Assumptions regarding prices

- the average production costs of offshore wind energy: €100/MWh
- SDE+ subsidy: €70/MWh (only for non-curtailed wind-power
- average APX price: € 30/MWh
- effective power price: €34,60/MWh
- green hydrogen price (chemical industry): €1.56/kg or €25.20/MWh
- green hydrogen price (mobility): €4.67/kg or €75.55/MWh
- Current ETS-allowance price impact: €6cts/kg

Assumptions regarding G17 & D18

- CAPEX platform preplacement: €10/kg
- CAPEX new deck for the electrolyser: €40/kg
- weight of gas-specific installations: 25% of total

Assumptions regarding platform G17

- OPEX of manned platform G17: €8,800,000/y
- weight G17: 3200 ton
- max. electrolysis capacity: 250 MW
- CAPEX rebuilding decks G17: €176,000,000
- decommissioning costs G17: €20,000,000

Assumptions regarding platform D18

- OPEX of satellite platform D18: €4,000,000/y
- weight D18: 1000 ton
- max. electrolysis capacity: 60MW
- CAPEX rebuilding decks D18: € 40,000,000
- decommissioning costs D18: €7,000,000

Assumptions related to CAPEX and OPEX investments

- CAPEX Sylizer 300 (projection): €600/kWh
- CAPEX desalination unit: €61.200 for a 2000L/h capacity unit
- OPEX Sylizer 300 and desalination unit: 2,5% CAPEX
- energy efficiency: 75%
- depreciation period electrolyser: 10 years
- residual value: €0