Retinal Vascular Features among South Indians

Aditya Nar

Alex Doney

E. Trucco

G. Pradeepa

Outline

- Background
- Why explore retinal images as biomarkers?
- What are retinal vascular features?
- Retinal Data reduction.
- Methods
- Results
- Experiment

- Relationship between RVFs and Microvascular Complications: A Exploratory Analysis

Age-specific prevalence of prediabetes and diabetes in 2006 and 2016

Background

- India is one of the epicentre for diabetes in Asia.
- In Tamil Nadu, prevalence in increasing, especially in villages.

Secular TRends in DiabEtes in India (STRiDE–I): Change in Prevalence in 10 Years Among Urban and Rural Populations in Tamil Nadu. *Diabetes Care 2019;42:476–485 | https://doi.org/10.2337/dc18-1559*

Background

• Diabetes disproportionally increases risk of vascular complications.

Open access	Research
BMJ Open Diabetes Research & Care	Real-world evidence of glycemic control among patients with type 2 diabetes mellitus in India: the TIGHT study

Surendra S Borgharkar,⁶¹ Soma S Das²

Figure 2 Duration of diabetes and various microvascular complications.

Why explore retina as potential biomarker?

- Non-invasive access to microvasculature (small blood vessels).
- Cost-effective and portable.
- Has to potential provide further information than DR severity.

```
Article Published: 19 February 2018
Prediction Review Articles
fro OPEN ACCESS
                        Retinal Vascular Caliber as a Biomarker for Diabetes
der Special Issue | Microvascular Complications
        Insight
Ryan I
M. Kamran Ikram, MD, PHD<sup>1,2,3,4</sup>, Carol Y. Cheung, PHD<sup>1,2,4</sup>, Mara Lorenzi, MD<sup>5</sup>, Ronald Klein, MD,
S. Cor Retinal MPH<sup>6</sup>, Teresa L.Z. Jones, MD<sup>7</sup>, Tien Yin Wong, MD, PHD<sup>1,2,4,8</sup>, for the NIH/JDRF Workshop on Retinal
Ryan I
Nature _____
                         Biomarker for Diabetes Group*
       Ferraz; Edward K( + Author Affiliations
13k A Keane
                        Corresponding author: Tien Yin Wong, ophwty@nus.edu.sg.
          + Author Affi
        Translational Visic Diabetes Care 2013 Mar; 36(3): 750-759.
                                                                                                                       Check for updates
       doi:https://doi.org/10.2337/dc12-1554
```


INSPIRED Project

• Utilise retinal fundus images to predict type 2 diabetic vascular complications among Scottish and South Indian participants.

What are retinal vascular features (RVFs)?

Retinal vascular features (RVFs)?

Retinal Vessel Calibre Six largest vessel in Zone B

Retinal Vessel Tortuosity Six largest vessel in Zone C

Retinal Vessel Fractal Measured from vessels in Zone C

- These three are common retinal features measured from fundus image.
- Measurement technique may differ , but the measurement zone are same.

References:

- 1. DOI: 10.1371/journal.pone.0179663
- 2. DOI: 10.1371/journal.pone.0203868
- 3. DOI: 10.1146/annurev.bioeng.6.040803.140100

Additional RVFs

- Branching geometry and width gradient are calculated using *Spline* and *Hermite* methods.
- 32 measurements additional RVFs are measured.

≥150 variables to manageable number of variables

References: 1. https://doi.org/10.2337/dc12-1554

RVFs	Definition		
Branching Coefficient	Ratio of branching vessel widths to trunk vessel width $(d_1 + d_2)^2/d_0^2$		
Asymmetry Factor	Ratio of the two branching vessel widths d_2^2/d_1^2 .		
Length-Diameter Ratio	Ratio of the length between two branching points to the trunk vessel width (L/d_0) .		
Width Gradient	Measured from main arteriolar path in each quadrant		

Retinal images obtained from MDRF centre are optic disc centred images.

Retinal Data reduction

Methods

- Retinal images were obtained from participants who visited MDRF clinic for retinal screening.
- N=2,075 diabetic participants have retinal images measured using VAMPIRE software.
- PCA technique was used to perform data reduction as it reduces several correlated variables into several linearly uncorrelated variables.
- Tortuosity, Branching Geometry and Width Gradient measurements underwent data reduction technique using PCA.

- Tortuosity and width gradient measurements were log-transformed.
- Branching Geometry measurements were standardize.
- Fractal dimension measurements were retained on the basis of Pearson correlation coefficient.
- Decision to retain PC's were based on Kaiser Index i.e. eigenvalue>1 and components which explained higher variance.

Results

Arteriolar Tortuosity

Moderate to high correlations observed between arteriolar tortuosity variables.

Arteriolar Tortuosity

0

0

5

10

Principal Components

15

 4 PC's show eigenvalue>1 and explain 68% variance, hence retained.

Variables Selected using PCA

Out of >150 VAMPIRE measurements obtained from MDRF participants, 22 were retained using PCA.

Original Dataset	PC's retained		
Tortuosity28 arteriolar and venular measurements	4 PC's from arteriolar and venular each.		
Width Gradient16 measurements	4 PC's retained		
Branching Geometry16 measurements	4 PC's retained		
Fractal Dimension3 arteriolar and venular measurements	1 arteriolar and venular measurement retained		
 Vessel Width 2 Arteriolar and Venular Equivalent along with 2 Std. Deviation of A & V equivalent 	All 4 measurements of arteriolar and venular equivalent along with std. deviation were retained.		

Experiment

Relationship between retinal vascular features (RVFs) and microvascular complications among South Indian diabetic patients

Hypothesis: RVFs are associated with microvascular complications among diabetic patients.

Methods

- Participants were recruited from diabetic specialist clinic in Chennai, India (MDRF).
- 2,075 participants who had retinal images measured using VAMPIRE software were included in this study.
- Participants disease status at latest visit was considered in events when participants visited to clinic more than once.

Study Population

Outcome Definition & Study Characteristics

		Microvascular Outcomes						
		Diabetic Retinopathy (DR)		Chronic Kidney Disease (CKD)	Neuropathy (DPN)			
	ion	Any DR	Proliferative DR	Stage 3 CKD				
	Definit	Mild non- proliferative DR + Proliferative DR	Proliferative DR	eGFR≤60 mL/min/1.72m ²	Great Toe Test score more than 20			

- Study Design: Cross-sectional
- Statistical Method: Logistic regression

Results

Relationship between Any Diabetic Retinopathy and Retinal Vascular Features Number of participants with DR: 851 (44.30%)									
RVFs	Base Model		Full Model						
	OR (95% CI)	P-value	OR (95% CI)	P-value					
Fractal Dimension-V ^{\$}	0.88 (0.81 – 0.97)	0.01**	0.89 (0.81 – 0.99)	0.031*					
Arteriolar Tortuosity PC1	1.11 (1.03 – 1.19)	0.006**	1.08 (1.00 – 1.17)	0.04*					
Branching Geometry PC1	1.08 (1.01 – 1.16)	0.02*	1.09 (1.00 - 1.17)	0.031*					
Relationship between Proliferative Diabetic Retinopathy and Retinal Vascular Features Number of participants with PDR: 27 (1.41%)									
Width Gradient PC1	0.68 (0.49 – 0.94)	0.02*	0.64 (0.44 – 093)	0.02*					
Relationship between Chronic Kidney Disease and Retinal Vascular Features Number of participants with CKD – Stage 3 : 126 (6.17%)									
Vessel Width-A ^{\$}	0.76 (0.62092)	0.007**	0.73 (0.58 – 0.92)	0.008**					
Fractal Dimension-A ^{\$}	0.75 (0.63 – 0.89)	0.001***	0.74 (0.61 – 0.90)	0.004**					
Branching Geometry PC2	0.83 (0.71 – 0.94)	0.006**	0.81 (0.69 – 0.94)	0.009**					

Base Model : Adjusted for age and gender Full Model : Adjusted for age, gender, HbA1c, sbp, smoke

*p≤0.05; **p≤0.01; ***p≤0.001

\$: Standardize

Conclusion

- This study suggest relationship between RVFs and DR, and CKD Stage 3.
- No relationship was detected between RVFs and diabetic neuropathy.
- Strength of the study, assessment conducted among large homogenous population.
- To my knowledge first study conducted among South Indian diabetic participants.
- Limitation of the study, cross-sectional nature the study.

Further steps

- Explore relationship between any microvascular complications and retinal vascular features among MDRF participants.
- Relationship between retinal vascular features and microvascular outcomes among type 2 diabetic patients: A GoDARTS study (Paper in Progress)
- Replicate these findings in GoDARTS population; but there are *challenges*:
- 1. Study Design: Prospective data points in GoDARTS after the date of image.
- 2. Centering Technique of retinal images, optic disk centered images in MDRF participants.

NIHR National Institute for Health Research

a BIG Thank You

- Alex Doney
- Emanuele Trucco
- Guha Pradeepa
- Yu Huang
- Abirami V
- Anand N

- Stephen Hogg
- Muthu M
- Health Informatics Centre
- INSPIRED Team Members
- MDRF Team Members

