

PhD Student Symposium 2020

Heterogeneity in genetic architecture for HDL- Cholesterol between Scottish and South Indian population with type 2 diabetes

Supervisors UK Prof Colin NA Palmer Prof Ewan R Pearson India Dr Guha R Pradeepa Dr Radha Venkatesan

20/10/2020

Dr Mehul Kumar Chourasia PhD Medicine (3rd Year)

Funding Acknowledgement

"This research was funded by the National Institute for Health Research (NIHR) (INSPIRED 16/136/102) using UK aid from the UK Government to support global health research. The views expressed in this publication are those of the author(s) and not necessarily those of the NIHR or the UK Department of Health and Social Care"

What we know??

- Type-2 diabetes mellitus (T2DM) patients have a substantially higher risk of cardiovascular morbidity compared to the non-diabetics and are disproportionately affected in LIC compared with MIC and HIC and by ethnicity such as Asian and Caucasian. [1,2]
- High-density lipoprotein cholesterol (HDL-c) has a protective effect against cardiovascular diseases. [3]
- A number of genetic polymorphisms influencing HDL-c levels such as *CETP, PCSK9* and *LPL*. [4]
- Preliminary data suggested that HDL-c profile between the two populations [Scottish (1.20±0.33) and South Indian (1.04±0.23)] were significantly different (p value <0.001)⁻
 [5]

1. Anjana RM, Mohan V, Rangarajan S, et al. Contrasting Associations Between Diabetes and Cardiovascular Mortality Rates in Low-, Middle-, and High-Income Countries: Cohort Study Data From 143,567 Individuals in 21 Countries in the PURE Study. Diabetes Care 2020; dc200886.

2. Einarson TR, Acs A, Ludwig C, Panton UH. Prevalence of cardiovascular disease in type 2 diabetes: a systematic literature review of scientific evidence from across the world in 2007-2017. Cardiovasc Diabetol. 2018;17:83.
 3. Kontush A. HDL-mediated mechanisms of protection in cardiovascular disease. Cardiovasc Res. 2014;103:341–9.

4. Liu DJ, Peloso GM, Yu H, Butterworth AS, Wang X, Mahajan A, et al. Exome-wide association study of plasma lipids in 300,000 individuals. Nat Genet. 2017;49:1758.

5. INSPIRED WP1 – Unpublished data provided by MK Siddiqui

What we saw earlier??

South Indian

HDL-c description (n =4,315); Male = 2615 (60.6%)						HDL-c description (n= 10,633), Male = 5958(56.03%)					
Variable	Mean	Std Dev	Median	Minimum	Maximum	Variable	Mean	Std Dev	Median	Minimum	Maximum
HDL (Baseline)	1.08	0.25	1.06	0.13	2.69	Hdl (Baseline)	1.33	0.409	1.26	0.31	3.93
HDL (After)	1.21	0.29	1.16	0.16	3.88	Hdl (After)	1.60	0.48	1.51	0.58	8.11

Ν

10,633

Mean

-0.27

Difference between Before and After HDL value (Paired T test)											
Ν	N Mean Std Dev Min Max t Value										
4,315	-0.14	0.20	-3.10	1.40	-43.83	<.0001					

12.6 % increase in HDL-c after statin initiation

20.3 % increase in HDL-c after statin initiation

Difference between Before and After HDL value (Paired T test)

Max

1.46

t Value

-87.97

P value

<.0001

Min

-5.58

Std Dev

0.32

*Unit mmol/l

Scottish

What we find earlier??

South Indian

HDL-c description (n =4,315); Male = 2615 (60.6%)						HDL-c description (n= 10,633), Male = 5958(56.03%)					
Variable	Mean	Std Dev	Median	Minimum	Maximum	Variable	Mean	Std Dev	Median	Minimum	Maximum
HDL (Baseline)	1.08	0.25	1.06	0.13	2.69	Hdl (Baseline)	1.33	0.409	1.26	0.31	3.93
HDL (After)	1.21	0.29	1.16	0.16	3.88	Hdl (After)	1.60	0.48	1.51	0.58	8.11

Difference between Before and After HDL value (Paired T test)											
N Mean Std Dev Min Max t Value						P value					
4,315	-0.14	0.20	-3.10	1.40	-43.83	<.0001					

12.6 % increase in HDL-c after statin initiation

Difference between Before and After HDL value (Paired T test)NMeanStd DevMinMaxt ValueP value10,633-0.270.32-5.581.46-87.97<.0001</td>

20.3 % increase in HDL-c after statin initiation

*Unit mmol/l

Scottish

Also... from earlier work !!!! Regression of Baseline HDL-c (a) with Polygenic risk score (PRS₄₀ and PRS₂₀₀)

- Genetic loci discovered for HDL-c in Scottish populations are present at similar frequency in South Indian populations, however the level of HDL-c modulated by these variants is lower.
- This Preliminary results suggests that additional population-specific genetic variation and selective resistance may exist for low HDL-c levels and lower HDL-c response observed in the South Indians.

Our objectives....

- To identify genetic variants for HDL-c levels among South Indian and Scottish Population.
- To study the heterogeneity of effects of genetic variants and Genes for HDL-c among the study population
- To estimate and compare the polygenic risk score (PRS) for HDL-c among the study population

Study Methodology

Sections	Description
Study design:	Retrospective cohort study
Study site:	Dundee(UK) and Chennai (India)
Study data:	For Epidemiology: Cohort of Tayside(UK) and MDRF [*] (India) For Genetics: GoDARTS (UK), GoSHARE(UK), and MDRF (India)
Data Source:	Electronic Medical Records
Study population :	Lipid lowering (Statins) drug users in the cohort

Study tools

Order	Analysis	Software used
1	GWAS	snptest , BOLT-LMM
2	Conditional analysis	snptest, GCTA
3	Meta analysis	GWAMA
4	Heterogeneity Analysis (Q , I ²)	GWAMA, MANTRA
5	Annotation, Visualisation, and functional consequences of genes	FUMA, LocusZoom
6	Gene based test / gene set analysis	MAGMA (provided by FUMA)
7	Polygenic risk score (PRS)	PRSice-2

Our objectives....

- To identify genetic variants for HDL-c (untreated) among South Indian and Scottish Population.
- To study the heterogeneity of effects of genetic variants and Genes for HDL-c among the study population
- To estimate and compare the polygenic risk score (PRS) for HDL-c among the study population

Manhattan plot and QQ plot of HDL-c: Meta analysis of Scottish T2D population* (n=12,043)

*GoDARTS and GoFusion

Adjusted for Age and Sex

Manhattan plot and QQ plot of HDL-c: Meta Analysis of South Indian population*

*MDRF f1 and f2

Population	EA	NEA	EAf	BETA	SE	P.value	n_studies	effects
Meta-UK	т	С	0.324	0.076	0.0047	2.19E-57	4	++++
MDRF	т	С	0.285	0.05	0.057	7.1E-29		

Population	EA	NEA	EAf	BETA	SE	P.value	n_studies	effects	Hetero (i2)	pvalue
Meta-UK	С	А	0.19	-0.078	0.005	6.3E-44	4	++++	0.96	6.8E-8
MDRF	С	А	0.24	-0.036	0.005	1.5E-11				0.02 0

Ganesan M, Nizamuddin S, Katkam SK, et al. c.*84G>A Mutation in CETP Is Associated with Coronary Artery Disease in South Indians. *PLoS One*. 2016;11(10):e0164151. Published 2016 Oct 21. doi:10.1371/journal.pone.0164151

Our objectives....

- To identify genetic variants for HDL-c (untreated) among South Indian and Scottish Population.
- To study the heterogeneity of effects of genetic variants and Genes for HDL-c among the study population
- To estimate and compare the polygenic risk score (PRS) for HDL-c among the study population

Heterogeneity analysis

• Cochran's Q : weighted sum of squared differences between individual study effects and the pooled effect across studies, with the weights being those used in the pooling method.

Q is distributed as a chi-square statistic with k (number of studies) minus 1 degrees of freedom.

- I² : describes the percentage of variation across studies that is due to heterogeneity rather than chance
- **Posterior Probability > 0.5 :** Heterogeneity in allelic effect

Chromosome 8

Chromosome 16

Our objectives....

- To identify genetic variants for HDL-c (untreated) among South Indian and Scottish Population.
- To study the heterogeneity of effects of genetic variants and Genes for HDL-c among the study population
- To estimate and compare the polygenic risk score (PRS) for HDL-c among the study population

Polygenic Risk Score (PRS)

- All reported SNPs (p > 5*10^8) associated with HDL-c were selected from a Trans-ethnic meta-analysis[#].
- Weighted PRS were constructed using PRSice v 2 (Kings College, London).
- PRS were calculated for additive genetic models and on the basis of unfavourable allele (allele associated with lower HDL-c).
- Weighted PRS formula
- wPRS = $\sum_{i} (S_i \times G_i) / M$
- S- beta estimate, G- no of effective allele, M no of SNPs

Unpublished GLGC 2020. The power of genetically diverse individuals in genome-wide association studies of blood lipid levels

Descriptive statistics of study population

population	n	Variable	Ν	N Miss	Mean	Median	Std Dev
South Indian	6056	age	5268	788	48.02	48.9	11.8
		B hdl	5268	788	1.042	1.009	0.25
		PRS	6056	0	-15.82	-15.825	0.32
Scottish	7034	age	4738	2296	59.35	60.0	11.23
		B hdl	4738	2296	1.22	1.170	0.34
		PRS	7034	0	-1.87	-1.866	0.16

Frequency								
Population	Sex (Male)							
South Indian (n = 5268)	3175(60.26%)							
Scottish (n=4738)	2567(54.17%)							

Regression of Baseline HDL-c (a) with Polygenic risk score (PRS_{GLGC-new})

Parameter Estimates										
VariableLabelDFParameterStandardEstimateErrort ValuePr > t										
Intercept	Intercept	1	3.82467	0.16361	23.38	<.0001				
sum_prs	sum_prs	1	0.17592	0.01034	17.01	<.0001				

Parameter Estimates											
Variable Label DF Parameter Standard Estimate Error t Value Pr > 1											
Intercept	Intercept	1	1.69833	0.05735	29.62	<.0001					
sum_prs	sum_prs	1	0.25178	0.03044	8.27	<.0001					

Effect of PRS on baseline HDL-c between the population

Dependent Variable: b_hdl

Source	DF	Sum of Squares	Mean Square	F Value	Pr > F
Model	3	109.3230082	36.44100274	419.91	<.0001
Error	10002	868.0059319	0.0867832365		
Corrected Total	10005	977.3289401			

Root MSE	0.2945899464		
R-Square	0.1118589696		

Parameter	Parameter Estimate	Standard Error	t Value	Pr > t
Intercept	5.951009305069	0.398903217	14.92	<.0001
PRS	0.100067184963	0.0362155763	2.76	0.0057
Population	-2.126337842499	0.203973295	-10.42	<.0001
PRS*Population	0.075854744757	0.0290171557	2.61	0.0090

Effect of PRS (Quintile) on HDL-c levels

Pop 1 – South Indian Pop 2 - Scottish

Effect of PRS on HDL-c levels (Gender wise)

Pop 2 - Scottish

Conclusion

- Heterogeneity in genetic architecture for HDL- Cholesterol exist such as *CETP* region between the study population.
- PRS suggests that genetic loci for HDL-c in Scottish populations are present at both similar and varied frequency compared with South Indian populations, which modulate the HDL-c at certain levels
- Higher HDL-c levels was observed among females with increase in PRS within the population shows an effect of gender on PRS and HDL-c levels.

Acknowledgement

My supervisors

Dundee

- Prof Colin NA Palmer
- Prof Ewan R Pearson

MDRF

- Dr Guha Pradeepa
- Dr Radha Venkatesan

INSPIRED team

Dr Fred, Ms Isobel, Dr Simona, Dr Sundar, Dr Moneeza, Anand, Aravind, Charvi, and all other INSPIRD colleagues

&

My family, my wife 'Aradhana' and my son 'Shrihaan'

