

FUNDED BY

NIHR

National Institute for Health Research

Neutrophil lymphocyte ratio as a Predictor of diabetic retinopathy Incidence in Scottish

population

 Aravind Lathika Rajendrakumar PhD Candidate

Prof. Colin Palmer
 Supervisor

Presentation Outline

- Introduction on Diabetic retinopathy (DR) and Neutrophil to Lymphocyte Ratio (NLR)
- Data source description
- Competing risks analysis of NLR with DR
- Summary of the findings
- Association of NLR with biomarkers in GoDARTS cohort
- GWAS of NLR in the Scottish population
- Protein-Protein Interaction Network and Gene-Gene Interaction Network

Data Source

- Tayside & Fife
- Genetics of Diabetes Audit and Research in Tayside Scotland (GoDARTS)
- Genetics of Scotland Health Research Register (GoSHARE)
- Madras Diabetes Research Foundation (MDRF)

Introduction

Diabetic Retinopathy

- microvascular complication with close to 35% of diabetic patients reporting DR globally
- Heterogeneity in DR is yet to be fully uncovered
- Explicit role of the immune system in DR risk has not been explored in detail
- Deaths mask the development of DR in individuals with diabetes

Neutrophil to Lymphocyte Ratio (NLR)

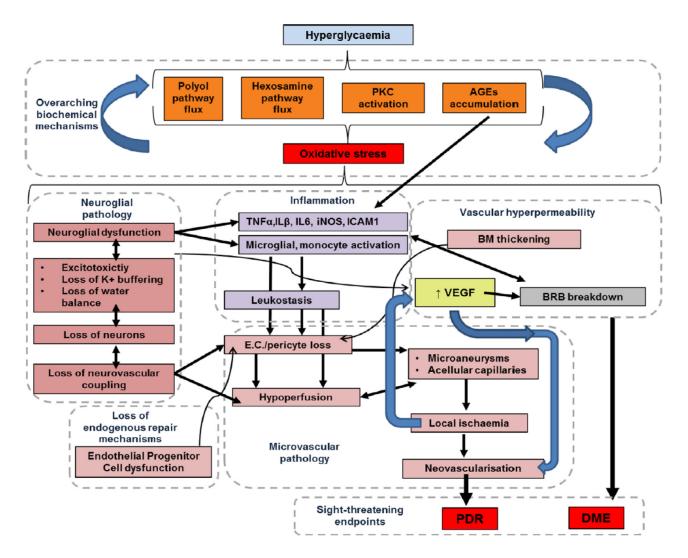
- white blood cell components that play an important role in immunity
- composite marker of inflammation which is routinely available as a part of clinical investigations
- more robust to variations and provide more predictive information than its component markers
- represents subclinical inflammation a prominent feature reported in chronic diseases and is generally high in individuals with diabetes.
- Neutrophils secrete different inflammatory molecules that affect the integrity of blood vessels whereas lymphocytes act as are more of modulators of inflammatory activity

Aims and objectives

- To describe the secular trends of DR and longitudinally examine the association between NLR and diabetic retinopathy under a competing risks model
- To identify the genetic locus of NLR and its biomarker associations using the Scottish genetic data
- To identify specific gene-gene and protein-protein interactions from the above analysis using network visualization using established datasets

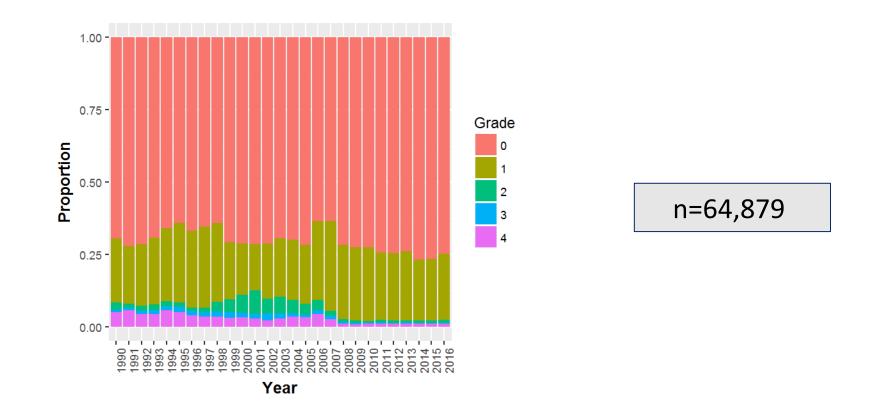
Phenotype definition

- Incidence of DR was defined as the time to the first diagnosis of R1 or above grade in the Scottish retinopathy grading scheme from diabetes diagnosis
- NLR was defined as the ratio of absolute counts of Neutrophils divided by absolute count of Lymphocytes

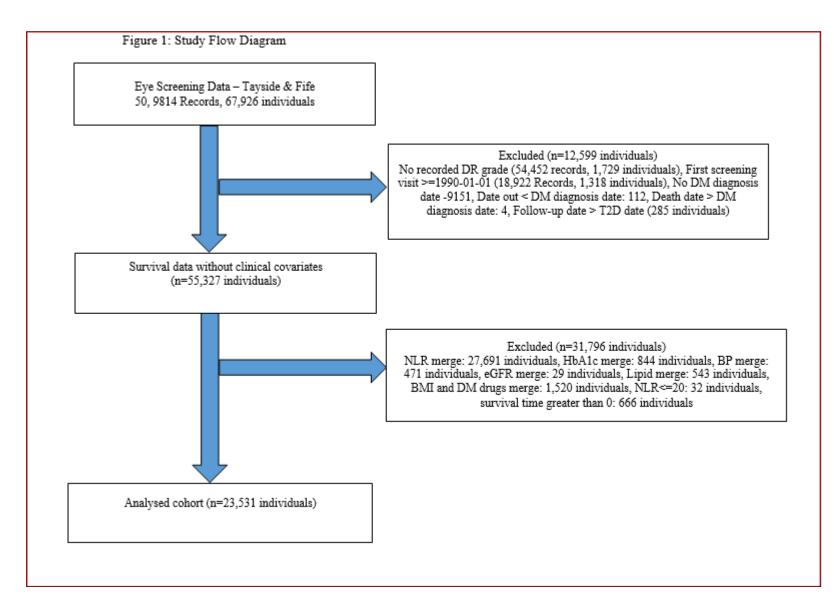

Phenotype definition (continued)

- Diabetic maculopathy status was not considered
- The grades range from 0-4 which indicates increasing severity of retinopathy from no retinopathy to severe proliferative retinopathy.
- Prior to the analysis, it was decided that all records with laser photocoagulation would be marked as R4 and for incidence analysis
- Participants who already had retinopathy at baseline would be excluded.
- Eye having a severe grade was considered
- Excluded all the individuals with NLR > 20 at baseline

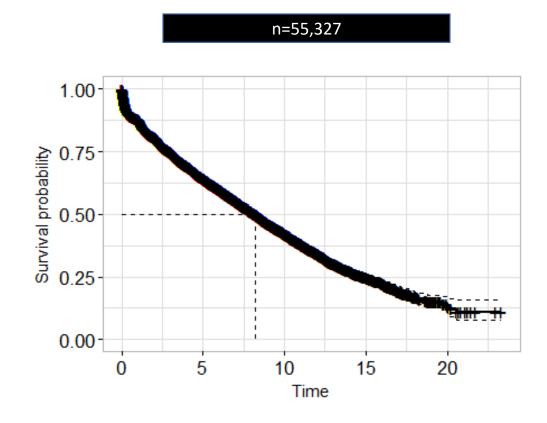
Statistical Analysis


- The effect of NLR and its interactions were explored using a competing risks model
- Fine-Gray model to predict the effect of NLR

Biochemical mechanisms involved in the pathogenesis of Diabetic Retinopathy

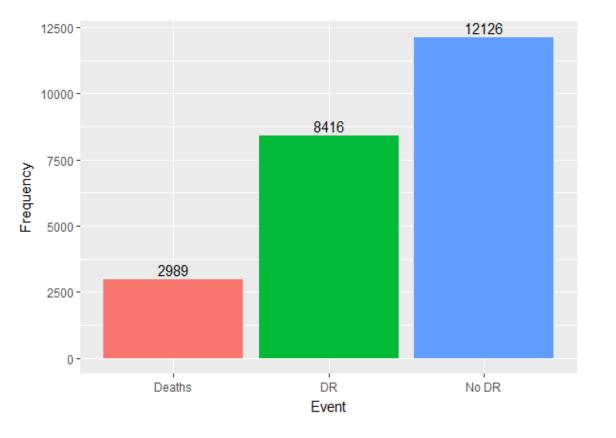

Source: Lechner J, O'Leary OE, Stitt AW. The pathology associated with diabetic retinopathy. Vision Res;139:7–14.

Trend in the prevalence of DR in Tayside and Fife from 1990-2016*

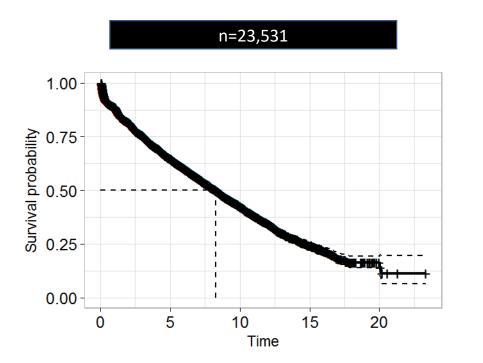


Subject may appear more than once in the plot*

Study Flow Diagram


Survival analysis – Tayside & Fife screening data set

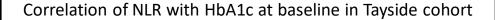
Incident DR =26214, Median -9.55 yrs, 0.95 LCL-9.42, 0.95 UCL-9.68

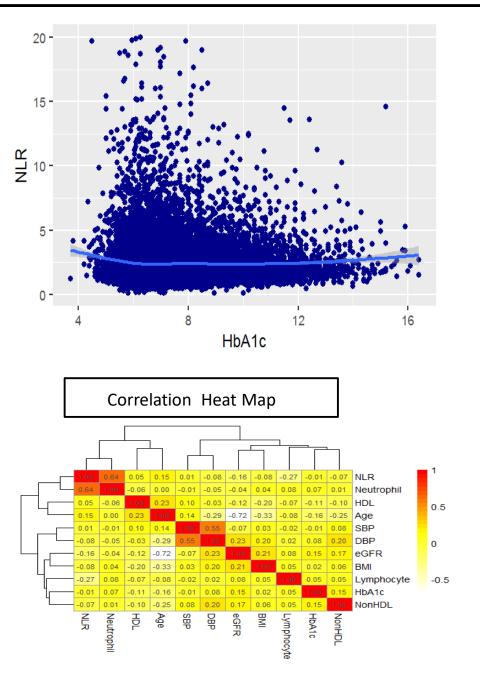

Prevalence of DR at the first retinal screening in Tayside and (n=64,879)

53594 40000 -Frequency 20000 -9525 582 738 440 0 -0 2 3 Retinopathy grades at first eye screening Events at the end of 10 Years follow up after Diabetes diagnosis in Tayside and Fife (n=23,531)

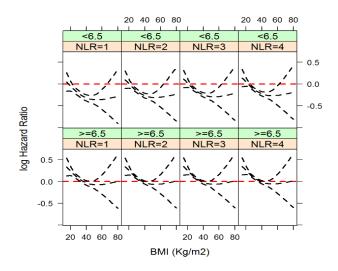
17.4% had DR at baseline, n=64,879

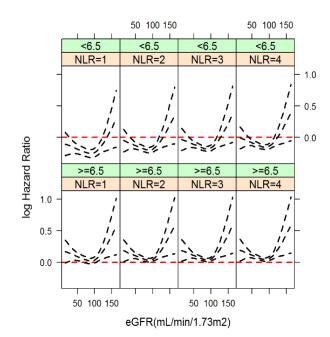
Complete Case Analysis- DR (10 Year Follow UP)

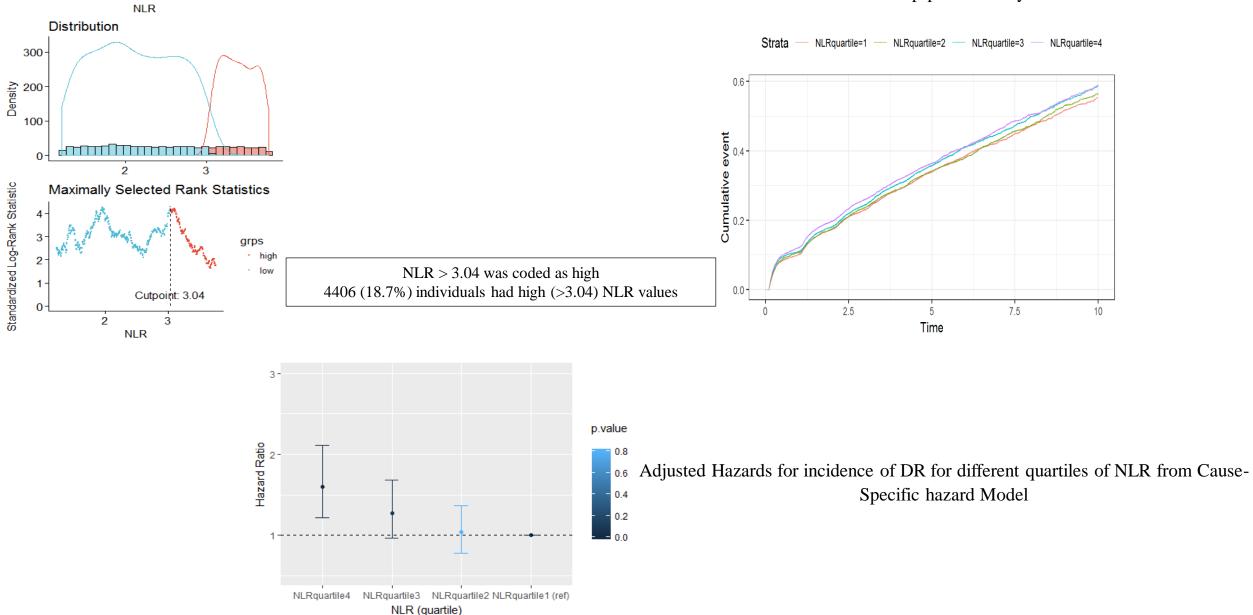



Demographic and clinical characteristics of participants at baseline (n=23,531)

Parameter	Mean	SD	Range
Age (Years)	61.7	12.7	17.1-96.5
Male (%)	55.3%		
Diabetes Drug (Yes %)	45.7%		
HbA1c (%)	7.3	1.5	3.7-16.4
SBP(mmHg)	140.3	17.3	72-240
DBP(mmHg)	81.3	9.9	40-142.5
eGFR (ml/min/1.73m ²)	80.6	19.6	15.5-163.2
Lymphocytes (10 ⁹ /L)	2.3	1.62	0.3-187.2
Neutrophils (10 ⁹ /L)	4.8	1.9	0.4-28.5
NLR	2.4	1.5	0.08-20.0
BMI (kg/m2)	32.2	6.6	15.2-73.9
HDL-c (mmol/L)	1.2	0.3	0.1-3.9
Non-HDL-c (mmol/L)	3.7	1.1	0.6-18.4


median follow up time was 3.3 years


Incident DR =8876, Median -8.27 yrs., 0.95 LCL-8.08 yrs., 0.95 UCL-8.48 yrs.

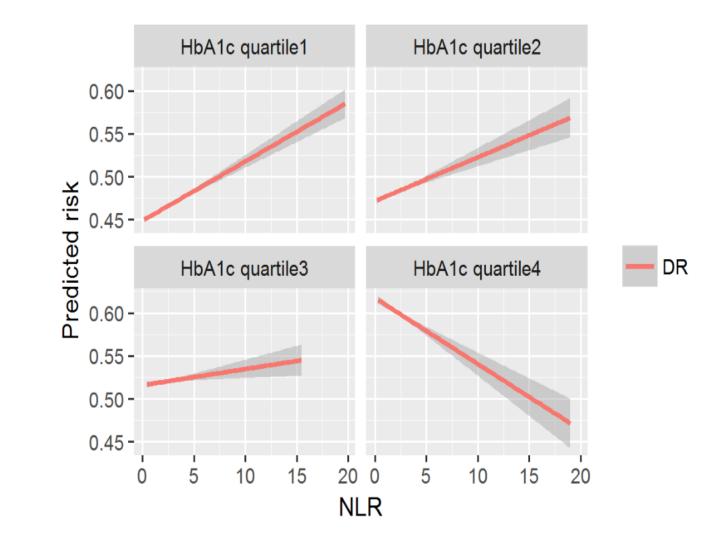


Three variable Conditional plot showing interaction depicting non –linear effects of (a) BMI (b) eGFR for glycaemic levels (high and low) in quartiles of NLR

Optimal cut-point for NLR determined using maximal selected rank statistics

Standardized Log-Rank Statistic

Cumulative incidence plot of hazards of DR incidence by NLR for a 10 year follow-up period in Tayside


Results of Cause-Specific and Fine-Gray regression model for 10-year Incidence of DR (n=23,531)

Parameter	CSH (95% CI)	P	SH (95%CI)	Р	
Sex(M)	1.08(1.04,1.13)	< 0.001	1.05 (1.01, 1.10)	< 0.05	
DBP(mm Hg)	0.99(0.99,0.99)	< 0.05	-	-	
HbA1c (%)	1.15(1.11,1.20)	< 0.001	1.19(1.15, 1.24)	< 0.001	
HbA1cxNLR	0.94 (0.91,0.97)	< 0.01	0.94 (0.90, 0.96)	< 0.001	
SBP(mmHg)	1.00(1.00,1.01)	< 0.001	1.00(1.00, 1.00)	< 0.001	
Age x NLR	-	-	0.99(0.99, 0.99)	< 0.001	
NLR(>3.04)	1.63(1.28,2.07)	< 0.001	2.24(1.70, 2.94)	< 0.001	
Non HDL-c(mmol/L)	0.96(0.94,0.98)	< 0.001	0.98 (0.98, 0.98)	< 0.01	
BMI (kg/m2)	0.99(0.99,0.99)	< 0.001	0.98(0.98, 0.98)	< 0.001	
eGFRml/min/1.73 m ²	-	-	0.99(0.99,0.99)	< 0.001	
Diabetes drug (Yes)	1.11(1.06,1.17)	< 0.001	-	-	
Adjusted for Age(years), HDL-c(mmol/L), eGFRxNLR					

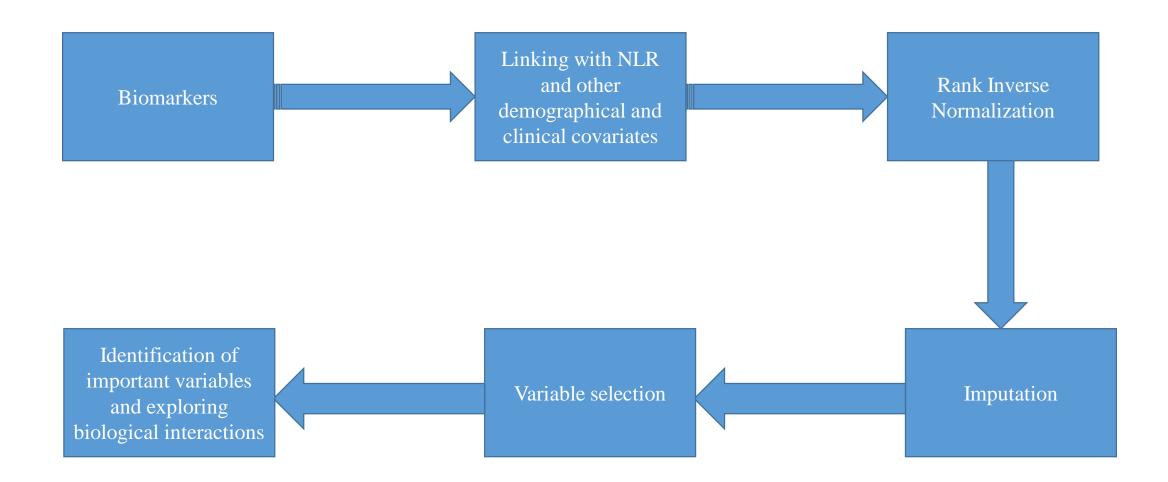
Subgroup analysis of NLR showing the difference in predicted risk for DR in younger (<=45 years) and versus older (>=65 years) age groups with better glycaemic control (<=7.0 %)

Parameter	Age (<=45 years)	Р	Age (>=65 years)	Р	
	(n=1,055)		(n=6,285)		
NLR(>3.04)	1.45 (1.08,1.94)	< 0.05	1.10 (0.99,1.22)	0.059	
Adjusted for Sex, SBP(mmHg), DBP(mm Hg), BMI (kg/m2), Non HDL-c(mmol/L), HDL-c(mmol/L), Diabetes drug, eGFRml/min/1.73 m ²					

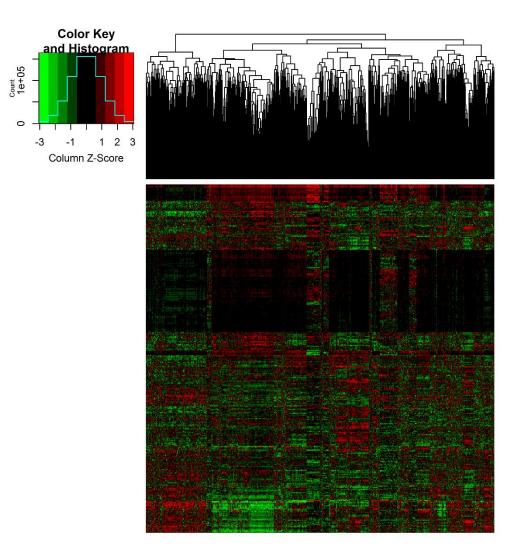
Risk for DR predicted by NLR stratified by quartiles of HbA1c estimated from covariate-adjusted Fine-Gray model (Hba1c quartile 4 had the highest HbA1c)

Summary and discussion

- powerful relationship between NLR levels at diagnosis of diabetes and the risk of retinopathy over a 10 year period
- both standard and "competing risk" methodologies to confirm that this relationship is independent of overall effects on mortality
- increased NLR does not provide independent additional prediction in individuals of advanced age or with poor diabetes control, but its utility is limited to younger individuals with better glycaemic control
- possible unmeasured confounders resulting from the observational nature of the data may have affected our study results

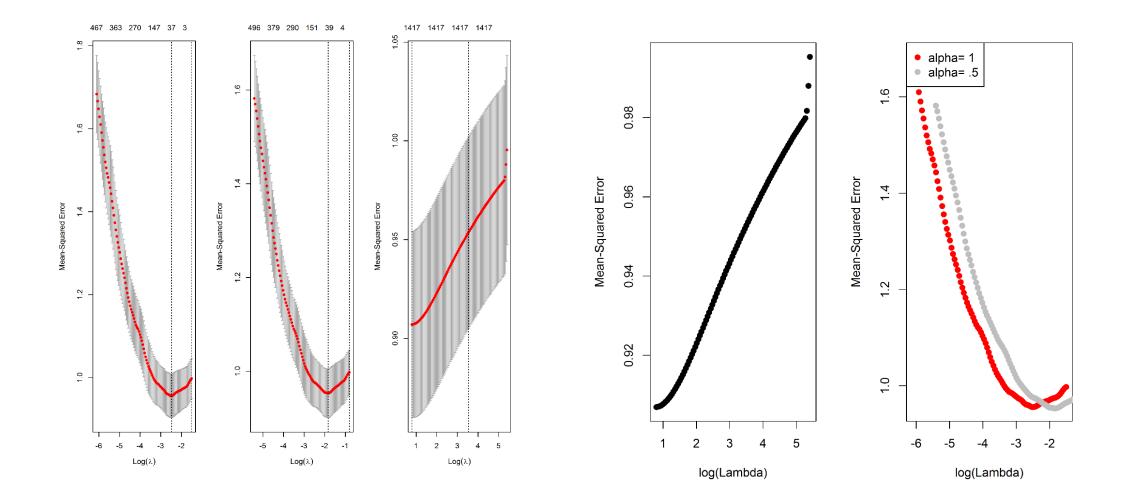

Association of NLR with Biomarkers from GoDARTS Cohort

What is RHAPSODY study all about?


- Comprehensive multi-omics database
- Peptidomic, lipidomic and polar metabolites analytic platforms to measure biomarkers to predict the trajectory from borderline diabetes to full blown diabetes and subsequent progression.
- 10 cohorts from 5 European countries
- Dundee is a part of this consortium!!!
- We assayed 1417 markers ... amazing is it not??!!!!
- Diabetic Kidney disease and diabetic retinopathy associations with GoDARTS cohort are being explored currently

Academia Université de Lausanne Switzerland Lunds Universitet Sweden Technische Universität Dresden Germany Università di Pisa Italy Université Paris Diderot - Paris 7 France **INSERM** France Université Libre de Bruxelles Belgium Institut Suisse de Bioinformatique Switzerland University of Oxford United Kingdom CNRS France University of Eastern Finland Finland University of Dundee United Kingdom Imperial College London United Kingdom Eberhard Karls Universität Tübingen Germany Kobenhavns Universitet Denmark University hospitals A.O.U. Città della Salute e della Scienza di Torino Italy UMCG – Groningen The Netherlands CHRU Lille France LUMC – Leiden The Netherlands VUmc – Amsterdam The Netherlands Pharmaceutical Industries (EFPIA) Institut de **Recherches Servier France** Janssen Pharmaceutica NV Belgium Novo Nordisk A/S Denmark Sanofi-Aventis Deutschland GMBH Germany Small and Medium-sized Entreprises SCIPROM Sàrl Switzerland Lipotype GmbH Germany

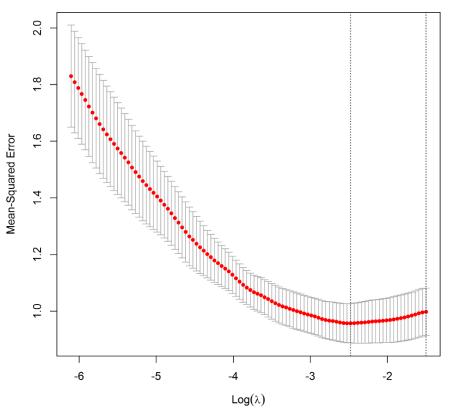
Analysis Flow Diagram



Heat map showing RHAPSODY Biomarker Correlations

Biomarkers

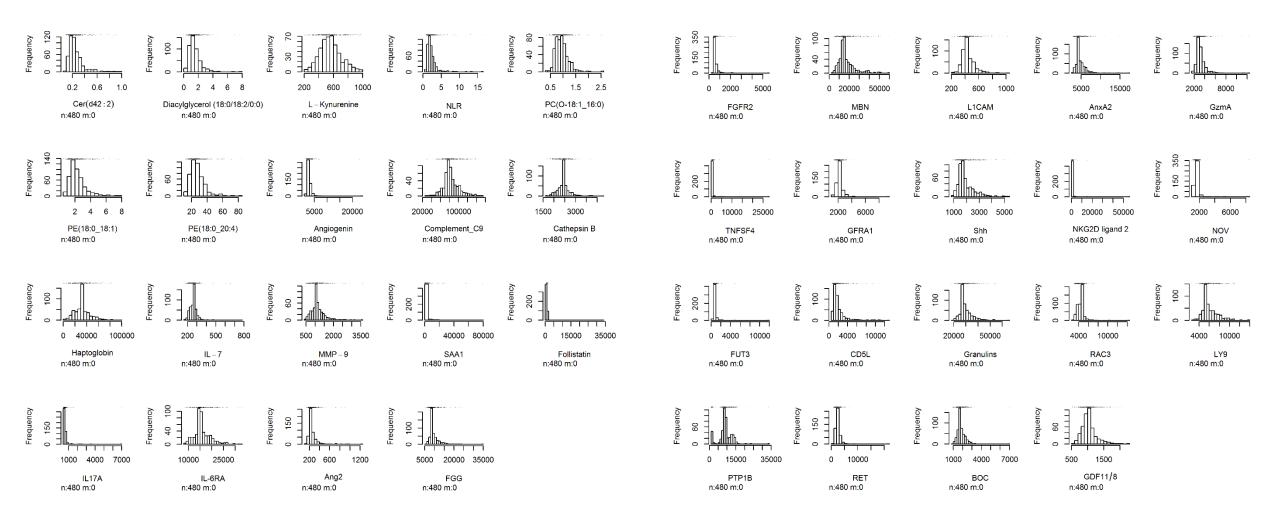
Plots indicating selection of tuning parameters of alpha from the test data


Summary statistics from full dataset

- 5 fold cross validation
- n= 480
- based on MSE
- alpha=1 and minimum λ
- $\Lambda \min$ lambda corresponding to minimum MSE in the model
- 37 variables with non zero coefficients selected by the model

Alpha=1	lambda	Measure	SE
min	0.083	0.957	0.069
1se	0.223	0.997	0.083

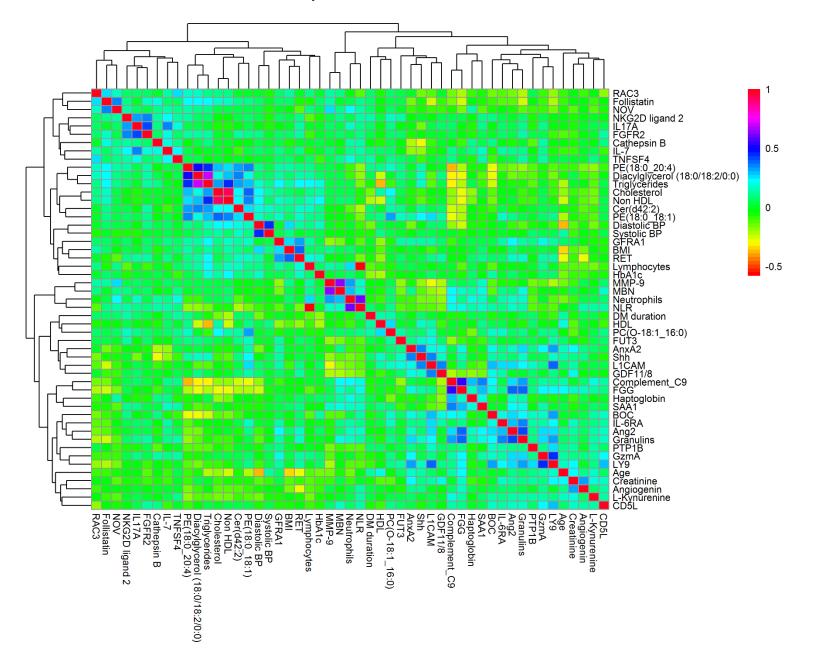
Plot showing fit with the optimal model parameters


467 424 378 354 304 270 220 166 111 66 37 13 4 2

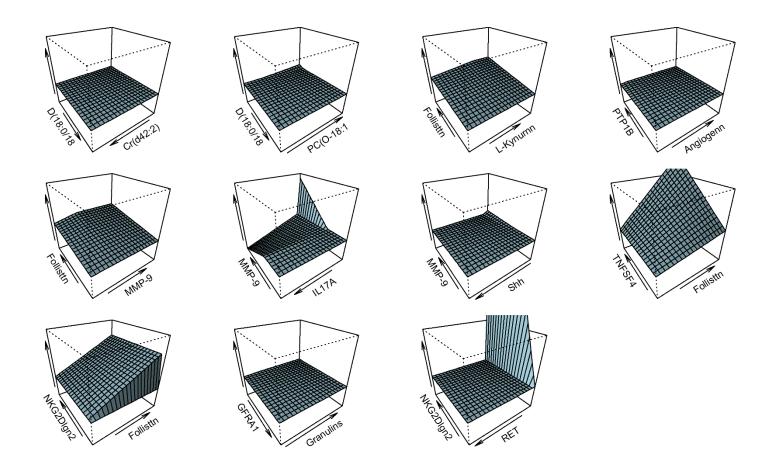
Biomarkers associated with NLR identified by elastic net

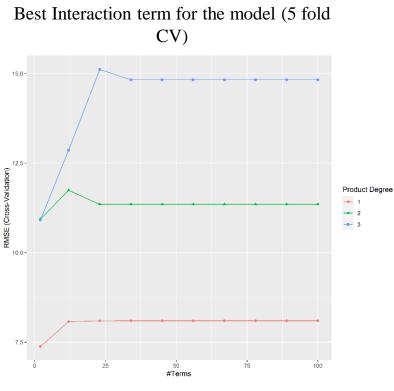
Code	Biomarker	Coefficients	
Kynu	L-kynurenine	0.022688	
SL000003	Angiogenin	0.003033	
SL000325	Complement component C9	0.014925	
SL000343	Cathepsin B	0.006689	
SL000437	Haptoglobin	0.01366	
SL000483	Interleukin-7	0.021571	
SL000527	Matrix metalloproteinase-9	0.016925	
SL000572	Serum amyloid A-1 protein	0.016943	
SL000674	Follistatin	0.018976	
SL001713	Interleukin-17A	0.002932	
SL001943	Interleukin-6 receptor subunit alpha	0.003097	
SL001996	Angiopoietin-2	0.041601	
SL003341	Fibrinogen gamma chain	0.018979	
SL003990	Fibroblast growth factor receptor 2	0.009232	
SL004008	Myeloblastin	0.044209	
SL004154	Neural cell adhesion molecule L1	-0.03188	
SL004209	Annexin A2	-0.00709	
SL004298	Granzyme A	-0.01025	
SL004649	Tumor necrosis factor ligand superfamily member 4	0.003996	
SL004858	GDNF family receptor alpha-1	-0.00357	
SL005220	Sonic hedgehog protein	-0.00479	
SL005228	NKG2D ligand 2	0.01731	
SL005236	Protein NOV homolog	0.018292	
SL005575	Galactoside 3(4)-L-fucosyltransferase	-0.00511	
SL006108	CD5 antigen-like	0.018737	
SL007173	Granulins	0.021398	
SL007310	Ras-related C3 botulinum toxin substrate 3	-0.0371	
SL007674	T-lymphocyte surface antigen Ly-9	-0.0272	
SL008967	Tyrosine-protein phosphatase non-receptor type substrate 1	-0.02455	
SL010378	Proto-oncogene tyrosine-protein kinase receptor Ret	-0.05613	
SL013490	Brother of CDO	0.036285	
SL021043	Growth/differentiation factor 11/8	-0.00805	
Cer_42_0_2	Ceramide (d42:0)	-0.09655	
DAG_18_0_0_18_2_0	Diacylglycerol (18:0_18:2)	-0.03777	
PC_0_18_1_0_16_0_0	Phosphatidylcholine (O-18:1_16:0)	0.015224	
PI_18_0_0_18_1_0	Phosphatidylethanolamine (18:0_18:1)	-0.00068	
PI 18 0 0 20 4 0	Phosphatidylethanolamine (18:0 20:4)	-0.00655	

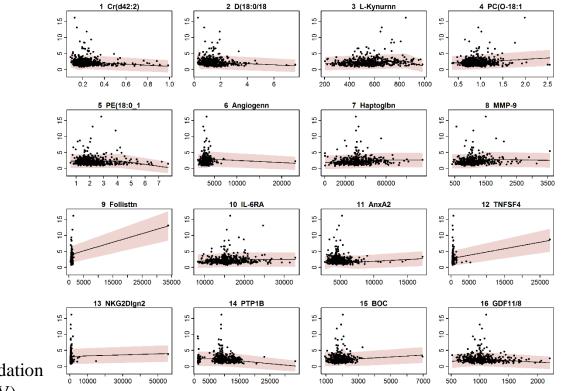
Biomarker distribution



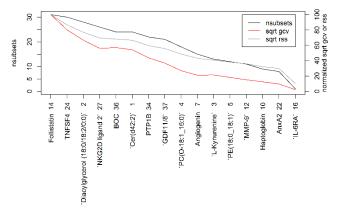
Summary statistics of all 37 biomarkers selected from LASSO

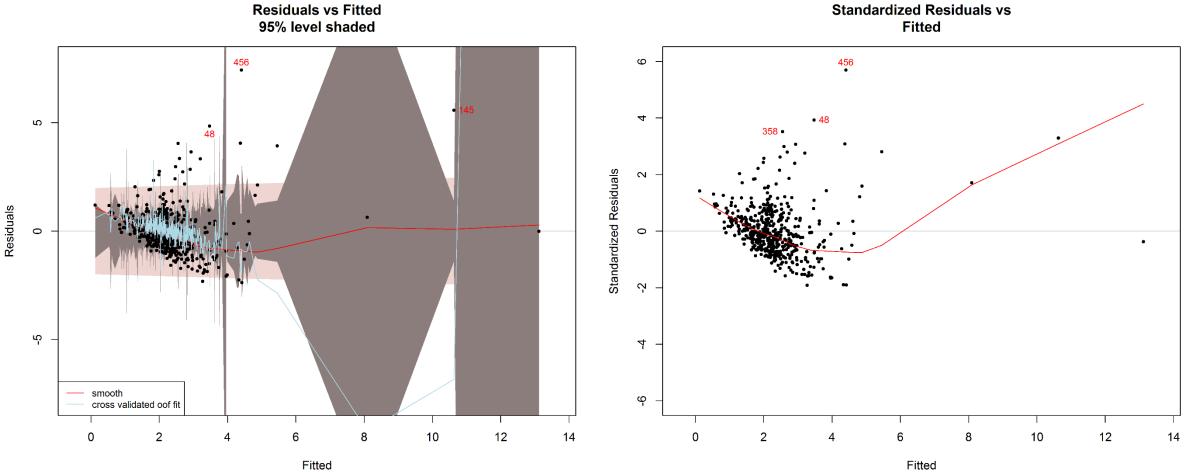

Biomarker sd median mad min max range skew kurtosis se n mean Cer(d42:2) 480 0.25 0.12 0.22 0.07 0.087461 0.98 0.89 2.36 7.68 0.005 Diacylglycerol (18:0/18:2/0:0) 480 1.48 0.80 1.34 0.59 0.271381 7.60 7.33 2.39 11.55 0.03 0.37 L-Kynurenine 480 558.69 147.21 548.53 132.77 203.7969 984.42 780.62 -0.0045 6.719 2.32 2 0.76 NLR 480 1.46 0.77 16.2 15.44 4.30 28.15 0.06 PC(0-18:1 16:0) 480 0.945594 0.26 0.91 0.367609 2.54 2.180 1.59 5.68 0.01 0.21 PE(18:0 18:1) 480 2.321292 1.03 2.06 0.75 0.603524 7.67 7.067 1.63 3.79 0.04 PE(18:0 20:4) 480 27.45 9.39 25.83 7.18 11.64146 83.88 72.24 1.74 5.39 0.42 2955.78 1125.98 2766.782 360.64 1288.9 23041.1 21752.2 12.13 208.96 51.39 Angiogenin 480 80606.96 11908.1 Complement C9 480 83677.1 17616.07 27368 152128.6 124760.6 0.65 1.44 804.05 2452.16 152.71 4264 2632.7 1.28 6.36 12.97 Cathepsin B 480 2443.20 284.30 1631.3 Haptoglobin 31245.23 9186.19 95593.6 0.84 596.89 480 32099.91 13077.36 165.5 95759.1 2.12 IL-7 480 265.20 50.67 267.430 27.25 165.9 763.1 597.2 4.14 31.71 2.31 MMP-9 480 1143.46 383.78 1078.59 247.73 420.7 3570.2 3149.5 1.90 6.68 17.51 SAA1 1944.55 78568.9 9.08 104.82 248.23 480 5438.57 651.61 373.58 176.3 78745.2 Follistatin 480 1024.86 1503.43 950.03 63.15 585 33803 33218 21.58 467.71 68.62 IL17A 480 627.44 372.58 578.59 52.85 411.1 6995.7 6584.6 12.12 185.53 17.00 IL-6RA 480 15929.08 3562.49 15124.73 2085.20 8257.9 32802.1 24544.2 1.12 2.51 162.60 Ang2 480 258.04 99.00 227.539 32.02 137.8 1206.4 1068.6 4.61 30.15 4.51 FGG 9619.14 2759.69 8686.99 978.50 5479.7 3.37 18.67 125.96 480 34657.1 29177.4 546.26 8.82 FGFR2 480 617.359 328.20 64.64 387.7 5578.6 5190.9 112.86 14.98 MBN 480 16782.93 7990.55 14452.59 4454.69 3257.7 58345.3 55087.6 1.88 4.66 364.71 443.096 94.23 415.186 1.71 5.52 4.30 L1CAM 480 54.46 210.8 1016.9 806.1 14558.5 AnxA2 480 4872.02 1420.40 4445.05 670.08 2711.4 17269.9 3.63 22.145 64.83 3227.45 3003.39 434.31 1650.4 4.03 30.65 41.98 GzmA 480 919.83 12303.7 10653.3 624.67 520.13 348.2 19.70 409.29 58.76 TNFSF4 480 1287.56 55.34 27772 27423.8 2137.60 GFRA1 480 2184.81 501.55 201.63 1294.1 9214 7919.9 6.26 79.84 22.89 Shh 480 1935.51 667.40 1714.73 381.49 869.4 5264.3 4394.9 1.76 4.11 30.46 NKG2D ligand 2 480 817.430 2625.18 587.809 69.37 442.4 55713.7 55271.3 19.40 397.16 119.82 NOV 480 1653.96 441.95 1620.36 138.44 1061.2 8419.6 7358.4 9.73 128.24 20.172 FUT3 480 767.29 576.83 680.58 133.73 411.2 11626.1 11214.9 14.78 264.16 26.32 CD5L 480 2099.58 1578.77 1578.7 513.79 568.4 12931.2 12362.8 3.43 14.42 72.06 Granulins 480 29752.56 5108.33 28000.05 2417.00 18166.3 65988.6 47822.3 2.09 8.14 233.16 RAC3 480 4415.65 792.99 4544.67 431.73 2973.4 14009.5 11036.1 4.79 50.00 36.19 LY9 480 6116.85 1508.32 5589.55 934.03 2614.6 13525 10910.4 1.28 2.17 68.84 PTP1B 480 9148.64 3592.51 8977.20 1832.34 1171.5 33384.1 32212.6 0.28 4.68 163.97 2212.22 477.36 21078.2 20248.7 9.09 RET 480 2415.88 1168.61 829.5 135.04 53.33 3.66 BOC 480 1839.67 444.29 1745.91 279.04 942 6959.5 6017.5 35.76 20.27 GDF11/8 480 1042.54 230.90 1009.42 158.93 518.7 2213.3 1694.6 1.38 3.56 10.53


regression


Correlation heat map of biomarkers and clinical markers

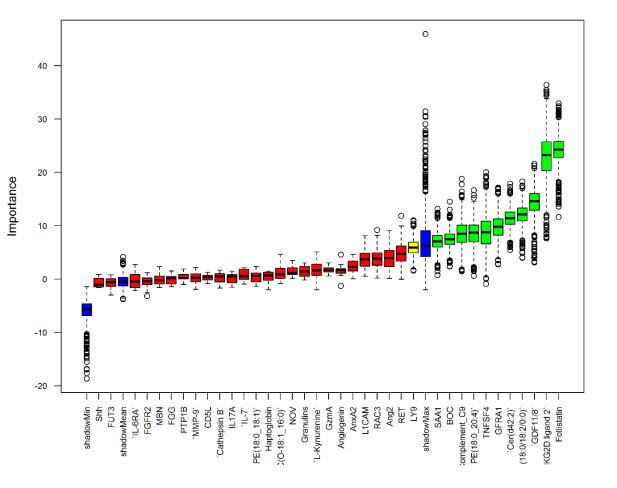
Visualizing complex relationships of biomarkers with NLR using Partial dependence plots



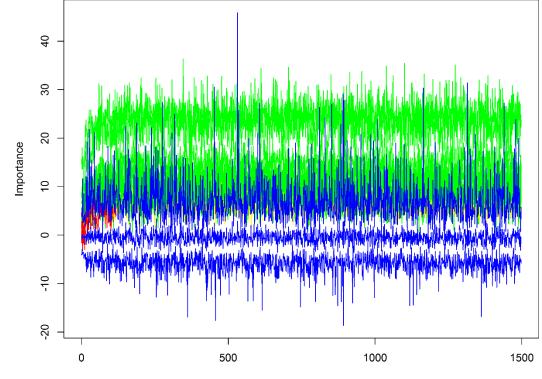


Estimate variable importance from 3-fold cross validation model using Generalized cross validation (GCV)

Variable importance



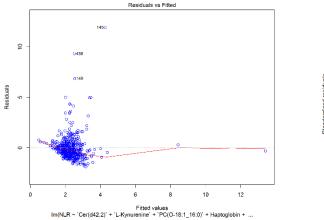
Plot showing model diagnostics

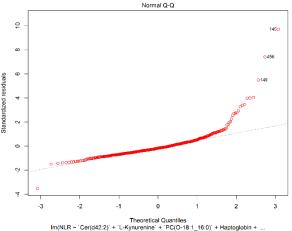


Random permutation procedure using random forest algorithm

Variable Importance

Matplot of attribute importance over run


Classifier run


Important markers selected using Stepwise linear regression (AIC based) $^{\text{Y}}$

Biomarker	Df	Sum of Sq	RSS	AIC
<none></none>			731.27	232.08
DAG(18:0/18:2/0:0)	1	3.497	734.76	232.37
AnxA2	1	3.798	735.06	232.56
PTP1B	1	4.823	736.09	233.23
RET	1	6.537	737.80	234.35
L1CAM	1	6.995	738.26	234.65
BOC	1	7.999	739.26	235.30
Haptoglobin	1	8.383	739.65	235.55
L-Kynurenine	1	9.839	741.11	236.49
IL17A	1	10.114	741.38	236.67
MBN	1	10.253	741.52	236.76
Cer(d42:2)	1	13.340	744.61	238.75
PC(O-18:1_16:0)	1	29.659	760.93	249.16
TNFSF4	1	33.509	764.78	251.58
Follistatin	1	122.064	853.33	304.17

untransformed independent variables^X

F-statistic: 13.38, Adjusted R-squared: 0.26

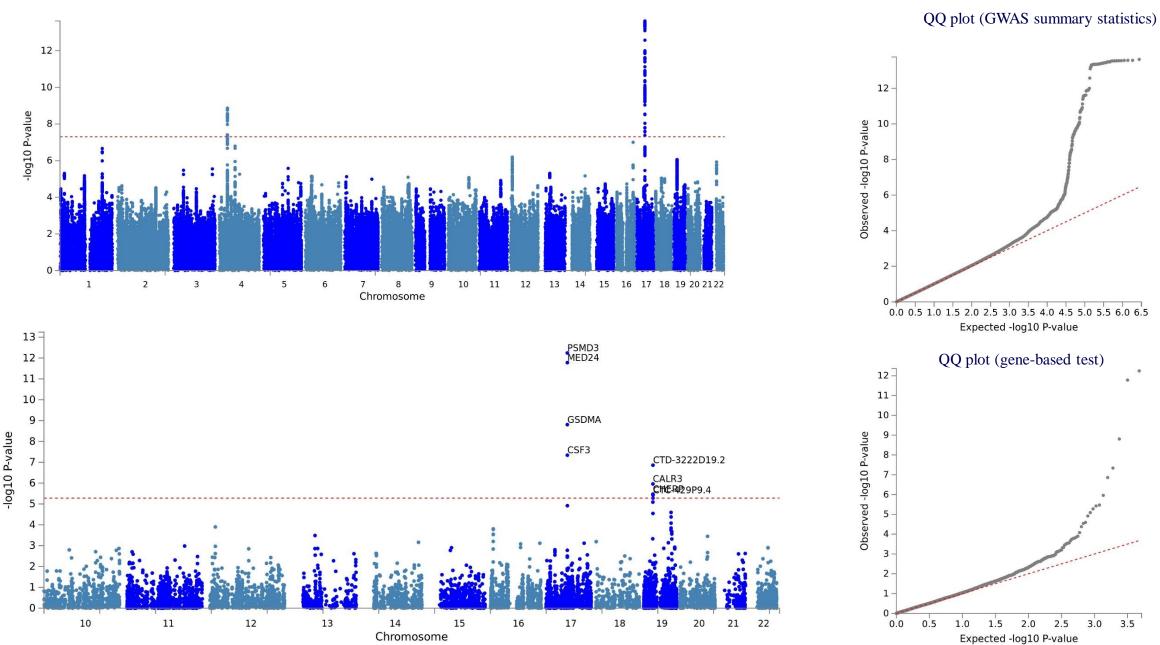
Significant markers carried forward from the AIC based model selection and conditioned

		NLR	
Predictors	Estimates	CI	р
(Intercept)	0.28	-0.69 - 1.25	0.570
Cer(d42 : 2)	-1.82	-2.740.90	<0.001
L-Kynurenine	0.00	0.00 - 0.00	0.015
PC(O-18 : 1_16 : 0)	0.99	0.55 – 1.44	<0.001
Haptoglobin	0.00	0.00 - 0.00	0.021
Follistatin	0.00	0.00 - 0.00	<0.001
IL17A	0.00	0.00 - 0.00	0.012
MBN	0.00	0.00 - 0.00	0.016
L1CAM	-0.00	-0.000.00	0.016
TNFSF4	0.00	0.00 - 0.00	<0.001
RET	-0.00	-0.000.00	0.049
BOC	0.00	0.00 - 0.00	0.022

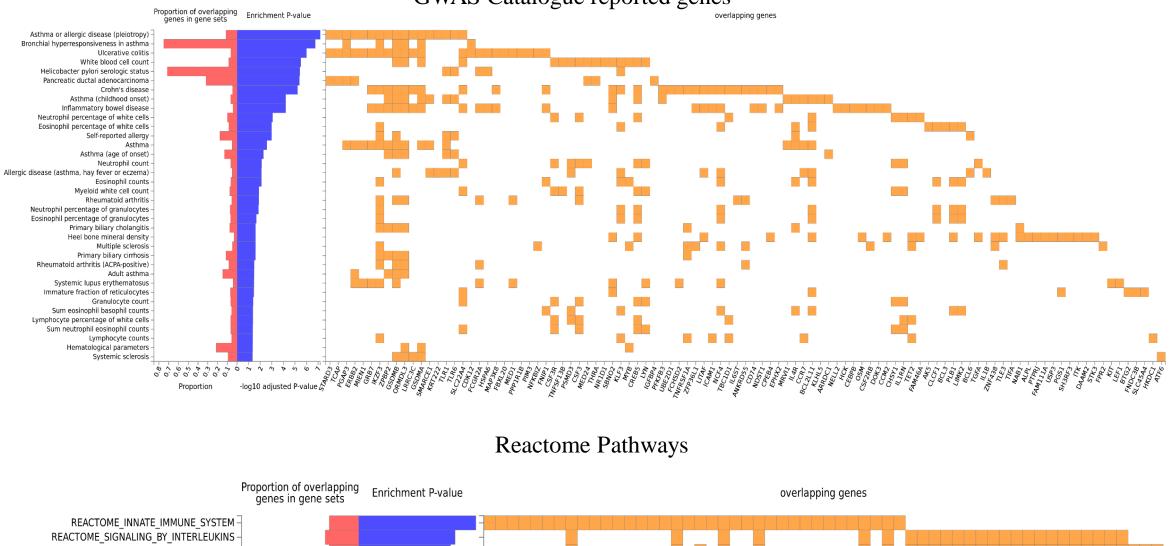
 R^2 / R^2 adjusted 0.275 / 0.258

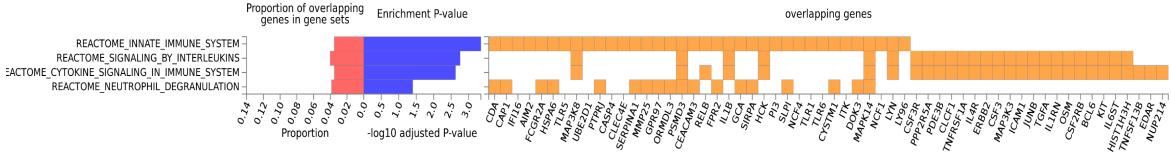
GWAS Meta analysis - NLR

Outline of data curation and analysis

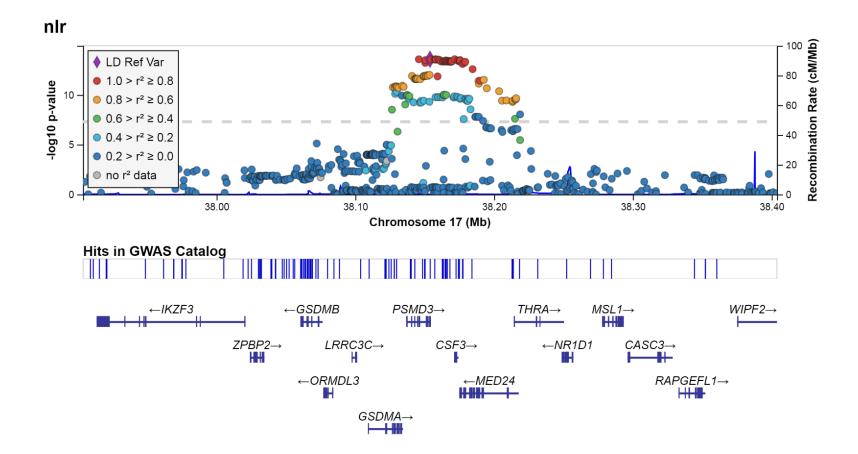

• Phenotype

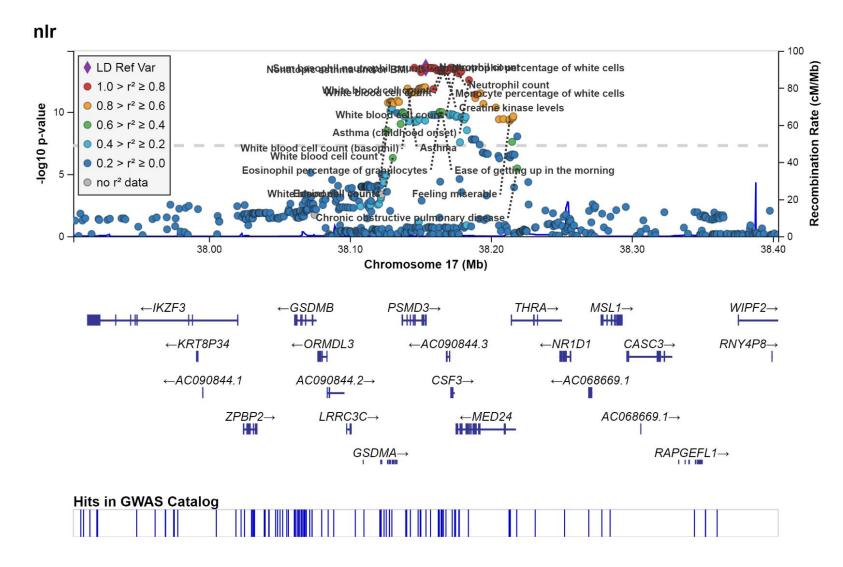
- removed values above and below 5 SD for Neutrophils and Lymphocytes
- Removed those NLR readings with ratio change more than previous value (> 2.5)
- Removed NLR readings above 5 for those individuals with single records
- Summarised NLR (all records of NLR summarised to median value after quality checks)
- Quality checks (No data available for other diseases in MDRF)
 Excluded NLR readings after diagnosis of cancer
 Excluded NLR readings after diagnosis of infections > 31 days
 Retained the first NLR reading if multiple reading reported in 28 days
- All the Cohorts were adjusted for PCs, Age, Sex and DM status
- SNP test was used for GWAS analysis
- GWAMA was used for fixed effects meta analysis GoDARTS + GoSHARE


Overall Cohort Description (n= 21,153)

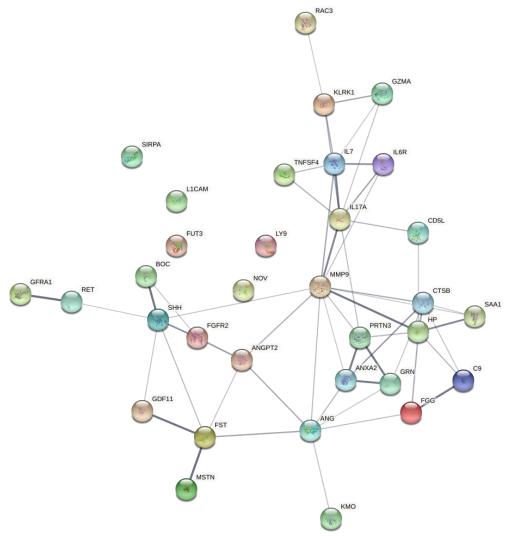

Cohort	Sample Size	Median NLR (IQR)	Median Age (IQR)	Sex (M%)	DM (%)	GIF (λ)
GoDARTS						
Affymetrix	3,754	2.30 (1.83-2.93)	74.75 (67.01-81.43)	2001(53.3%)	3651(97.2%)	1.02
Illumina	3,549	2.29 (1.75-2.94)	74.19 (65.43- 81.42)	2035(57.3%)	3417(96.3%)	1.04
Broad	1,834	2.15 (1.68-2.70)	70.12 (59.03-79.42)	924(50.4%)	951(51.8%)	0.99
GoSHARE	6,446	2.14 (1.70-2.73)	66.49 (56.28-75.30)	3581 (52.8%)	4891(72.1%)	1.01
GDF2	5,570	2.04 (1.62-2.71)	69.39 (58.72 -79.75)	2727(48.9%)	433 (7.7%)	1.02
GoSHARE +GoSHARE + GDF2	21,153	-	-			1.09

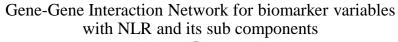
GWAS of NLR in the Scottish Cohort

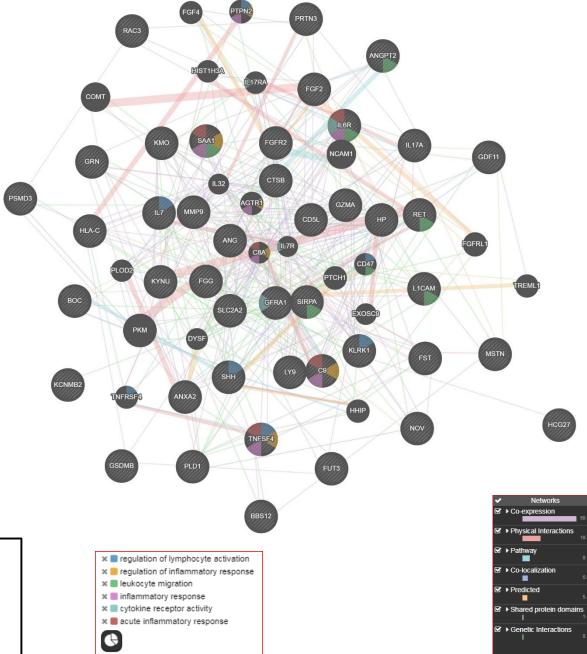

GWAS Catalogue reported genes

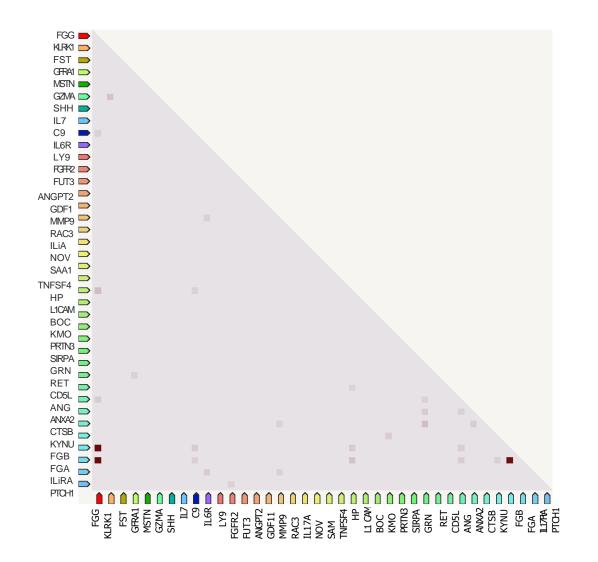


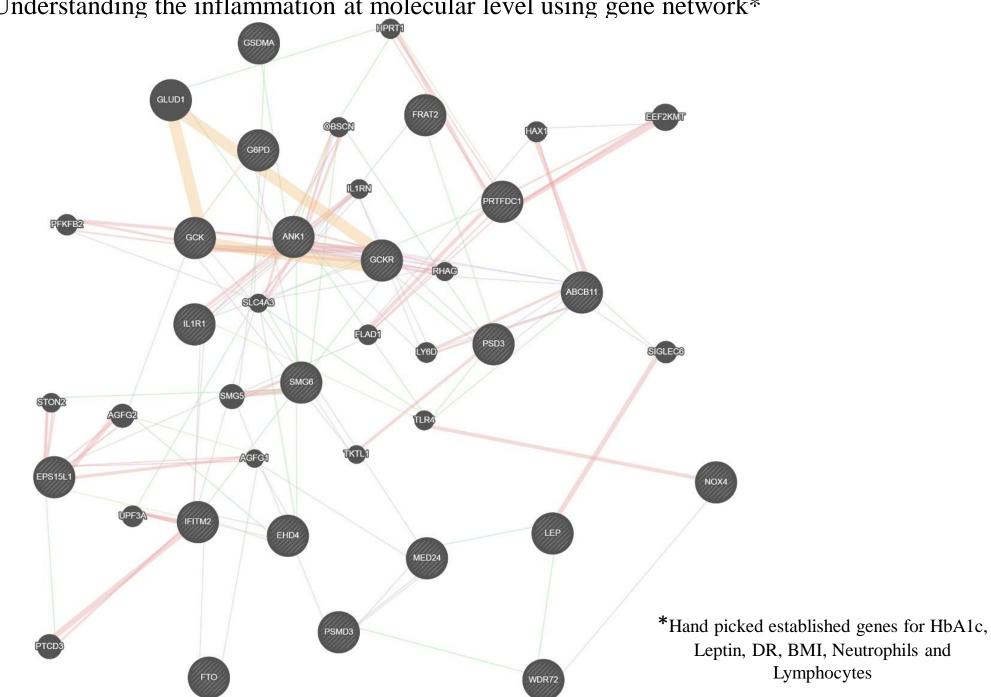
Source: https://fuma.ctglab.nl/


Locus Zoom Plot of Chromosome 17


Locus Zoom Plot of Chromosome 17




number of nodes: 33 number of edges: 55 average node degree: 3.33 avg. local clustering coefficient: 0.48 expected number of edges: 11 PPI enrichment p-value:< 1.0e-16



Gene Expression

observed Co-expression in Homo sapiens:

Understanding the inflammation at molecular level using gene network*

Acknowledgement

- All Members of INSPIRED Research group.
- MDRF team
- Health Informatics Centre (HIC)- University of Dundee
- National Institute for Health Research (NIHR)

This research was commissioned by the National Institute for Health Research using Official Development Assistance (ODA) funding [INSPIRED 16/136/102].

"The views expressed are those of the author(s) and not necessarily those of the NHS, the NIHR or the Department of Health and Social Care."

Thank You

Questions?