

Phenotypic and genotypic determinants of glycaemic deterioration rate in South Indian Type 2 diabetes population

Prof. Ewan Pearson Prof. Colin Palmer Dr. Viswanathan Mohan Dr. RM Anjana Anand Thakarakkattil Narayanan Nair

PhD Candidate

OUTLINE

- 1. Background
- 2. Objectives
- 3. Methods
- 4. Results
- 5. Summary

INTRODUCTION

BACKGROUND

- T2D is a heterogenous progressive disease condition with cases having unique disease progression pathways.¹
- Identifying faster progressors will help in provision of personalized intensive diabetes management to delay the progression
- Age of diagnosis, baseline HDL-c, HbA1c, BMI are major factors associated with T2D progression.^{2,3,4}
- 'Time to insulin' models have affected by clinical practice and doctor:patient:socio-cultural factors.
- Glycaemic deterioration or coefficient failure- reports annual rate of glycemic deterioration.
- Most of the studies conducted in European T2D population.

Diabetes Indian perspective

*

Tandon N, Anjana RM, Mohan V, Kaur T, Afshin A, Ong K, et al. The increasing burden of diabetes and variations among the states of India: the Global Burden of Disease Study 1990–2016. The Lancet Global Health. 2018 Dec 1;6(12):e1352–62

Coefficient of failure/glycaemic deterioration rate

- Rate of glycaemic deterioration – slope of regression line.
- Previous studies reported Age of diagnosis, HDL-c, beta cell function are associated with rate of glycemic deterioration.^{8,9,10}

OBJECTIVES

OBJECTIVES

- 1. Estimate the 'coefficient of failure' in the study population
- 2. Identify the clinical and lifestyle factors associated with coefficient of failure/glycaemic deterioration in the study population.
- 3. Identify genetic variants associated with coefficient of failure/glycaemic deterioration.

METHODOLOGY

Data source

- Data source: Madras Diabetes Research Foundation (MDRF)
- Electronic health records generated for each individual and updated in each follow up visit.
- Anonymized data available for epidemiological analysis.
- Data access through secure virtual desktop systems equipped with statistical packages.

Variables used in analysis

- Longitudinal HbA1c,BMI and prescription data
- Variables included in the analysis
 - 1. Age of diagnosis
 - 2. Sex
 - 3. Smoking
 - 4. Alcohol
 - 5. Family H/O T2D
 - 6. Calendar year
 - 7. BMI
 - 8. HbA1c
 - 9. Total Cholesterol
 - 10. HDL
 - 11. Triglycerides
 - 12. HOMA B
 - 13. HOMA IR

All phenotype recorded within 365 days from date of diagnosis

Analysis description

- Linear Mixed model
 - Fixed and random effects: intercept and slope
 - Longitudinal HbA1c as dependent variable and Change in BMI, drug effect as fixed effect in model, T2D case unique id as random effect.
- Simple linear regression model
 - Glycaemic deterioration rate obtained from linear mixed model as dependent variable and phenotypes and lifestyle factors at diagnosis as independent variable
- Genome wide association studies (GWAS)
 - To detect the variants associated with glycaemic deterioration

RESULTS

Data flow for linear mixed model

65803 HbA1c measurements

Drugs at HbA1c measurement time 150 days N=10339

BMI measurements 180 days N=10339

Mixed model results

Variable	Estimates
BMI stable	Reference
BMI Increase	0.19 (0.17-0.21)
BMI reduction	-0.34 (-0.310.36)

BMI change 5% from baseline

Drug	Estimate (95% CI)
Untreated	Reference
Met	-0.05 (-0.030.07)
AGI	-0.17 (-0.090.24)
DPP	-0.02 (-0.09-0.05)
GLP	-0.13(-0.38- 0.12)
TZD	-0.07 (-0.18- 0.04)
SU	0.00 (-0.02- 0.02)
SGLT	0.10 (-0.15- 0.35)

Glycemic deterioration rate

Mean annual glycemic deterioration Median annual glycemic deterioration 0.098%(95% CI 0.096-0.099) 0.091% (IQR 0.051-0.125) obs.meanmedians.d.min.max.103390.0980.0910.086-0.2210.689

Baseline characteristics of the study participants (N=9713)

Variable	Level	Mean(SD)/N(%)
Sex	F	3817 (39.3)
	Μ	5896 (60.7)
Age of diagnosis	mean (sd)	46.6 (11.5)
HbA1c (%)	mean (sd)	8.9 (2.4)
BMI (kg/m²)	mean (sd)	27.5 (7.3)
HDL-c (mg/dl)	mean (sd)	39.5 (8.8)
Triglyceride (mg/dl)	mean (sd)	172.2 (134.0)
Total cholesterol (mg/dl)	mean (sd)	184.6 (45.2)
HOMA_IR	mean (sd)	3.3 (13.9)
HOMA_B	mean (sd)	82.0 (59.5)
Family History DM	No H/o DM	4147 (42.7)
	H/o DM	5566 (57.3)
Smoking status	No	7993 (82.3)
	Yes	1720 (17.7)
Alcohol status	No	7469 (76.9)
	Yes	2244 (23.1)

Glycemic deterioration Vs age of diagnosis

Univariate associations Linear regression

- Slope from linear mixed model (glycemic deterioration rate) as dependent variable.
- A positive estimate indicate it increases rate of glycemic deterioration
- A negative estimate denote it decreases rate of glycemic deterioration

Variable	Level	Estimate
Sex	F	REF
	Μ	0.01[0.00-0.01]
Age of diagnosis		-0.01[-0.01-0.00]
HbA1c (%)		0.01[0.01-0.01]
BMI (kg/m²)		0.00[0.00-0.00]
HDL-c (mg/dl)		-0.04[-0.050.02]#
Triglyceride (mg/dl)		0.02[0.01-0.02]#
Total cholesterol (mg/dl)		0.03[0.03-0.05]#
HOMA_IR		0.02[0.01-0.03]#
HOMA_B		-0.02[-0.030.02]#
Family History DM	No H/o DM	REF
	H/o DM	0.01[0.01-0.02]
Smoking status	No	REF
	Yes	0.02[0.01- 0.03]
Alcohol status	No	REF
	Yes	0.01[0.01-0.02]
Calendar year of diagnosis		0.00[0.00-0.00]
#- log transformed		

Linear regression analysis

- Slope from linear mixed model (glycemic deterioration rate) as dependent variable.
- A positive estimate indicate it increases rate of glycemic deterioration
- A negative value denote it decreases rate of glycemic deterioration
- Higher age of diagnosis and elevated HDL-c decreases rate of progression
- Higher baseline HbA1c, BMI, dyslipidemia increases rate of progression

Variable	N	Estimate		р
age_diag	9713		-0.00 (-0.00, -0.00)	<0.001
log(hdl)	9713		-0.01 (-0.02, -0.00)	0.05
BMI_num	9713	•	0.00 (0.00, 0.00)	0.01
log(hba1c)	9713	•	0.06 (0.05, 0.06)	<0.001
log(cho)	9713		0.01 (0.00, 0.02)	0.03
(Intercept)			0.01 (-0.03, 0.06)	0.58

-0.02 0 0.020.040.06

Insulin resistance and beta cell function at T2D diagnosis

Effect of HOMA B and HOMA IR

- Slope from linear mixed model (glycemic deterioration rate) as dependent variable.(HOMA B and HOMA IR adjusted for age and sex)
- A positive estimate indicate it increases rate of glycemic deterioration
- A negative value denote it decreases rate of glycemic deterioration
- Higher beta cell function at T2D diagnosis slows the rate of progression
- Higher insulin resistance increases rate of progression

Variable	N	Estimate		р
age_diag	3330		-0.00 (-0.00, -0.00)	<0.001
sex F	1356		Reference	
Ν	1 1974		0.00 (-0.00, 0.01)	0.477
log(HOMA_B)	3330		-0.01 (-0.01, -0.00)	0.006
log(HOMA_IR)	3330		0.01 (0.01, 0.02)	<0.001
(Intercept)		F ⊞ -1	0.16 (0.13, 0.18)	<0.001

Genetic variants associated with glycemic deterioration rate

MDRF Freeze 2 (N=292)

- Genome wide association test with glycemic deterioration rate as linear trait
- Age and Sex adjusted model
- Population stratification adjusted with Principal Components
- MAF >0.05
- Combined the results using meta analysis
- Fixed effect meta analysis
- Number of individuals in combined analysis (n=1010)

GWAS Results-MDRF Freeze 1

Manhattan Plot

GWAS Results-MDRF Freeze 2

Chromosome

Meta analysis results

Manhattan Plot

Chromosome

9 10

18 21

Nearest genes

Top Loci

Marker	▲ rsID	Nearest gene(s)	-log ₁₀ (p)
3: 23,351,346		UBE2E2	7.406
10: 13,418,594		AL355870.2	6.415
6: 51,880,345		PKHD1	6.290
9: 2,208,793		SMARCA2	6.288
3: 59,707,773		AC126121.3	6.057
2: 104,275,278		AC018880.2	6.007

UBE2E2 gene (Ubiquitin Conjugating Enzyme E2 E2)

• Shown associated with diabetes- rs7612463- chr3:23294959

A genome-wide association study in the Japanese population identifies susceptibility loci for type 2 diabetes at *UBE2E2* and *C2CD4A-C2CD4B*

Toshimasa Yamauchi, Kazuo Hara, [...] Takashi Kadowaki 🖂

Nature Genetics 42, 864–868(2010) Cite this article

424 Accesses | 187 Citations | 3 Altmetric | Metrics

Medicine (Baltimore). 2016 May; 95(19): e3604.

Published online 2016 May 13. doi: 10.1097/MD.000000000003604

PMCID: PMC4902507 PMID: <u>27175665</u>

Type 2 Diabetes Risk Allele UBE2E2 Is Associated With Decreased Glucose-Stimulated Insulin Release in Elderly Chinese Han Individuals

Published: 05 September 2010

SUMMARY

Summary of analysis

- First study assessing coefficient of failure and its determinants in Asian Indian T2D population.
- Mean annual glycemic deterioration from this study (0.098%) is in range with those estimates from other population.^{8,9}
- Indicators of insulin resistance is driving glycemic deterioration in this study population based on final adjusted model [high BMI, Dysplidemia, Low HDL-c]
- We demonstrate the effect of beta cell function and Insulin resistance on glycemic deterioration rate in an age and sex adjusted model.
- Studies conducted among Caucasian population reported similar findings and we validate these findings in Asian Indian population.
- We identified a SNPs in chr 3 associated with glycemic deterioration, which needs validation.
- Combining these phenotypic and genotypic information will aid in development of precision medicine in diabetes management.

Acknowledgment

- All Members of INSPIRED Research group.
- Dr Louise Donnelly
- Dr Adem Y Dawed
- Data management team in MDRF
- National Institute for Health Research (NIHR)

This research was commissioned by the National Institute for Health Research using Official Development Assistance (ODA) funding [INSPIRED 16/136/102].

"The views expressed are those of the author(s) and not necessarily those of the NHS, the NIHR or the Department of Health and Social Care."

THANK YOU

Reference

- 1. Fonseca VA. Defining and characterizing the progression of type 2 diabetes. *Diabetes Care*. 2009; **32**(suppl_2): S151- S156
- 2. Pilla SJ, Yeh HC, Juraschek SP, Clark JM, Maruthur NM. Predictors of insulin initiation in patients with type 2 diabetes: an analysis of the look AHEAD randomized trial. *J Gen Intern Med*. 2018; **33**(6): 839-846.
- 3. Zhou K, Donnelly LA, Morris AD, et al. Clinical and genetic determinants of progression of type 2 diabetes: a DIRECT study. *Diabetes Care*. 2014; **37**(3): 718-724.
- 4. Liu S, Liu JJ, Gurung RL, et al. Clinical Determinants of Diabetes Progression in Multiethnic Asians with Type 2 Diabetes A 3-Year Prospective Cohort Study. *Ann Acad Med Singapore*. 2019;48(7):217-223.
- 5. International Diabetes Federation. IDF Diabetes Atlas, 8th edn. Brussels, Belgium:International Diabetes Federation, 2017. <u>http://www.diabetesatlas.org</u>
- 6. Anjana RM, Deepa M, Pradeepa R, Mahanta J, Narain K, Das HK, et al. Prevalence of diabetes and prediabetes in 15 states of India: results from the ICMR–INDIAB population-based cross-sectional study. The Lancet Diabetes & Endocrinology. 2017 Aug 1;5(8):585–96.
- Wright, A.K., Welsh, P., Gill, J.M.R. *et al.* Age-, sex- and ethnicity-related differences in body weight, blood pressure, HbA_{1c} and lipid levels at the diagnosis of type 2 diabetes relative to people without diabetes. *Diabetologia* (2020). <u>https://doi.org/10.1007/s00125-020-05169-6</u>
- 8. Donnelly LA, Zhou K, Doney ASF, Jennison C, Franks PW, Pearson ER. Rates of glycaemic deterioration in a real-world population with type 2 diabetes. *Diabetologia*. 2018;61(3):607-615. doi:10.1007/s00125-017-4519-5
- 9. Wallace TM, Matthews DR. Coefficient of failure: a methodology for examining longitudinal beta-cell function in Type 2 diabetes. *Diabet Med*. 2002;19(6):465-469. doi:10.1046/j.1464-5491.2002.00718.x
- 10. Kahn SE, Haffner SM, Heise MA, et al. Glycemic durability of rosiglitazone, metformin, or glyburide monotherapy . *N Engl J Med*. 2006;355(23):2427-2443. doi:10.1056/NEJMoa066224