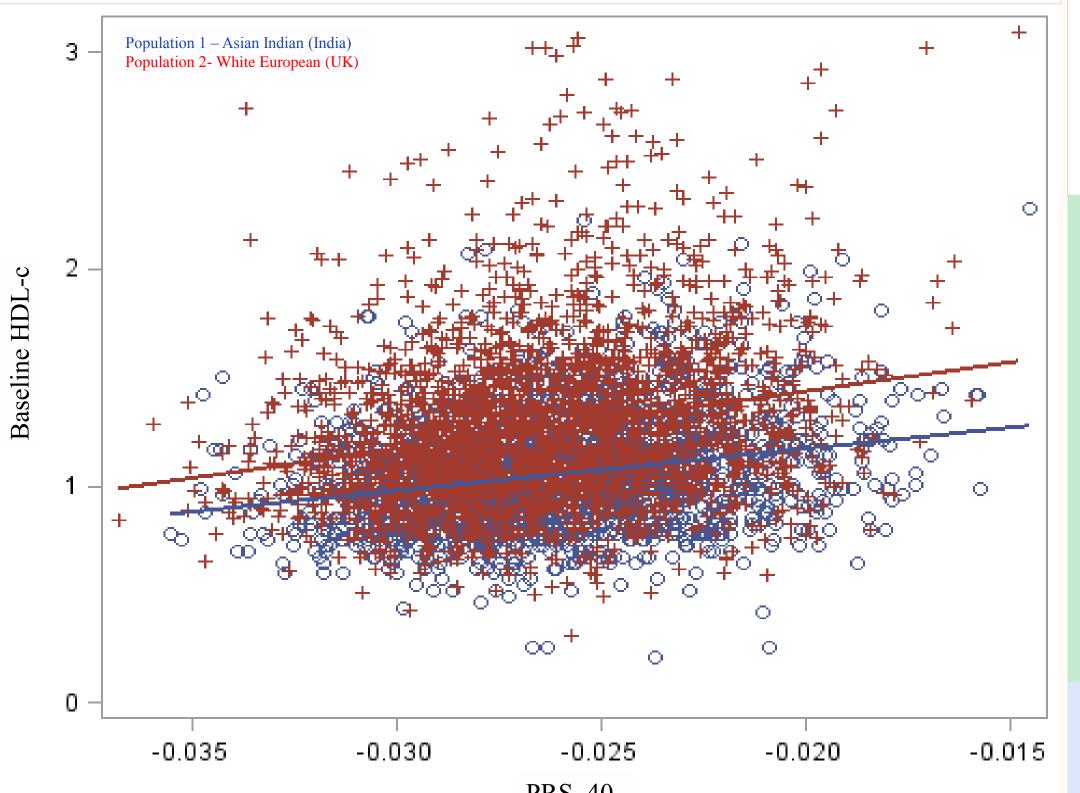


Comparison of the effect of Polygenic Risk Scores (PRSs) on baseline HDL-c levels between white European and Asian Indian type 2 diabetes mellitus population: A pilot study Mehul K Chourasia¹, Charvi Nangia¹, Simona M Hapca¹, Moneeza K Siddiqui¹, Sundararajan Srinivasan¹, Ewan R Pearson¹, Pradeepa R², Venkatesan Radha³, Viswanathan Mohan², Colin NA Palmer¹

- 1. Division of Population Health and Genomics, Ninewells Hospital, University of Dundee, Dundee, United Kingdom
 - 2. Dr Mohan's Diabetes speciality centre (DMDSC), Chennai, TamilNadu, India
 - 3. Department of Molecular Genetics, Madras Diabetes Research Foundation, Chennai, TamilNadu, India


Introduction		Results			Results		
•	 Type-2 diabetes mellitus (T2DM) patients have a substantially higher risk of cardiovascular morbidity compared to the non-diabetics¹. South Asians have a higher prevalence of 	Table 1: Characteristics of the study population			• Baseline HDL-c and PRS were normally		
		Population Variable	Asian Indian (India)	White European (UK)	 distributed in both the population PRS₄₀ explained a similar (5- 6%) variance in both populations 		
		Age; mean(SD)	63.8(10.5)	62.9(11.5)	• However, PRS ₂₀₀ showed a more pronounced		
		Sex; Female(%)	38.4	42.8	effect in the White Europeans (~10% variance) in		
	early-onset cardiovascular morbidity compared to	Baseline HDL-c; mean(SD)	1.05(0.26)	1.26(0.38)	contrast with the Asian Indians where the effect		

- other ethnic groups¹.
- High-density lipoprotein cholesterol (HDL-c) has a protective effect against CVD².
- Previous meta-analysis suggest a number of genetic polymorphisms influence HDL-c levels such as *CETP*, *PCSK9* and *LPL* $^{(3,4)}$.
- Preliminary data suggest that HDL-c profile [Scottish the between populations two (1.20 ± 0.33) and India (1.04 ± 0.23)] were significantly different (p value <0.001)⁵.
- This study compared the effect of polygenic variation on HDL-c levels between the two study populations.

Study Objective

• To construct and compare weighted polygenic risk

Graph 1: Regression of Baseline HDL-c (a) with Polygenic risk score (PRS_{40})

- was almost diminished.
- In both gene scores genetically predicted HDL-c levels were identical between the populations, however the lower observed HDL-c in the Indian population was reflected by a much lower perallele effect (slope).

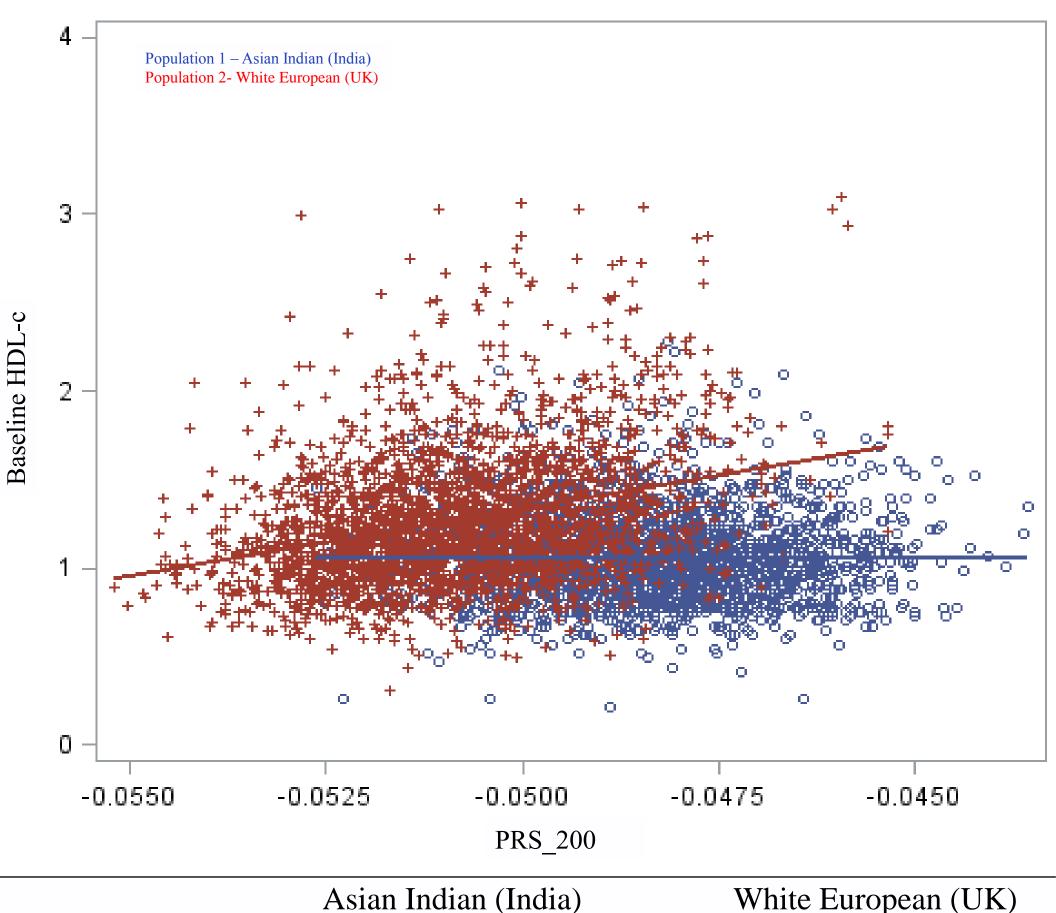
Discussion and conclusion

- Genetic loci discovered for HDL-c in Caucasian populations are present at similar frequency in Indian populations, however the level of HDL-c modulated by these variants is lower.
- This suggests that additional genetic variation • exists in the Indian population to determine the low HDL levels observed in this population.

Way forward

scores (PRSs) from known loci associated with HDL-c in a white European (GoDARTS) and Asian Indian T2DM population.

Study Methodology


Study population	 GoDARTS cohorts* (n = 2,736) Asian Indian* (n = 1,953) 			
Exclusion criteria	 Subjects with missing baseline HDL-c measurements 			
Co-variates	• Age, sex			
Study outcome	 Baseline HDL-c (Before lipid lowering drugs) 			
Study predictor	 Weighted Polygenic risk score (GLGC, Exome wide study) 			
*Genotyped in Illumina platform				

Weighted Polygenic risk score

All reported SNPs associated with HDL-c were selected from a meta-analysis (~40 SNPs) and exome-wide association study $(\sim 200 \text{ SNPs})^{(3,4)}$.

	PK5_40			
	Asian Indian (India)	White European (UK)		
Intercept	1.56	1.97		
Slope	19.31	26.62		

Graph 2: Regression of Baseline HDL-c (a) with Polygenic risk score (PRS_{200})

- Similar PRS will be constructed for baseline HDLc levels with a larger Asian Indian population
- This PRS will be used in a conditional GWAS to \bullet adjust for variants affecting baseline HDL-c levels to evaluate actual pharmacogenetic drug response.

References

- 1. Einarson TR, Acs A, Ludwig C, Panton UH. Prevalence of cardiovascular disease in type 2 diabetes: a systematic literature review of scientific evidence from across the world in 2007-2017. Cardiovasc Diabetol. 2018;17:83.
- Kontush A. HDL-mediated mechanisms of protection in 2. cardiovascular disease. Cardiovasc Res. 2014;103:341–9.
- 3. Willer CJ, Schmidt EM, Sengupta S, Peloso GM, Gustafsson S, Kanoni S, et al. Discovery and refinement of loci associated with lipid levels. Nat Genet. 2013;45:1274-83.
- Liu DJ, Peloso GM, Yu H, Butterworth AS, Wang X, Mahajan A, et 4. al. Exome-wide association study of plasma lipids in 300,000 individuals. Nat Genet.2017;49:1758.
- INSPIRED WP1 Unpublished data provided by MK Siddiqui
- 6. Euesden J, Lewis CM, O'Reilly PF. PRSice: Polygenic Risk Score software. Bioinformatics. England; 2015;31:1466–8.

Acknowledgements

• We would like to thank Health Informatics Centre at Farr Institute, Dundee, Scotland for their support in data

- Weighted PRS were constructed using PRSice - v 2 (Kings College, London)⁶.
- PRS were calculated for additive genetic models and on the basis of unfavourable allele (allele associated with lower HDL-c).

Weighted PRS formula wPRS = $\sum_{i} (S_i \times G_i) / M$

S- beta estimate, G- no of effective allele, M – no of SNPs

Intercept	1.07	5.18
Slope	0.39	77.04

Table 2: Comparison of the effect of PRS (40 & 200) on baseline HDL-c in both the study populations

Population	Asian Indian			White European		
Outcome	β(SE)	P value	R ²	β(SE)	P value	R ²
PRS ₄₀	19.3(1.7)	<0.0001	0.06	26.19(2.2)	<0.0001	0.05
PRS ₂₀₀	0.39(3.7)	NS	0.000	77.04(4.4)	<0.0001	0.10

management.

- We would also like to thank entire INSPIRED project staff for their constant support.
- The research was commissioned by the National Institute Health Research using Official Development for Assistance (ODA) funding [INSPIRED 16/136/102].

Contact details

Dr Mehul Kumar Chourasia Email : mkchourasia@dundee.ac.uk

FUNDED BY

Disclaimer: "The views expressed are those of the author(s) and not necessarily those of the NHS, the NIHR or the Department of Health and Social Care."