

DRAMS Journal Club

Hi,

Thanks for signing up to present at Journal Club! This document contains (hopefully) all the information you will need for putting together your presentation.

DRAMS should now have put you in touch with the clinician who has agreed to supervise your session. If this has not been done, or you are having trouble contacting the clinician, please email DRAMS and we will sort this out. Once you have made contact, you should both agree on the paper you will present and select key areas for discussion.

Once the paper has been decided, please email DRAMS with the article name and author(s) etc so we can provide the paper to students in advance via our website.

Below are checklists to help you analyse the paper. They are intended as a guide and are by no means exhaustive. If you or the cliniciannotice other discussion points unique to your paper then please include them!

Overview of session:

- 10 minute formal presentation
- 20 minute discussion

Presentation:

The presentation should be around 10 minutes long and be about 8-12 slides long. You should prepare by familiarising yourself with the chosen paper, working through the checklist (on the next page) and considering your own questions and issues with interpreting the paper.

Presentation structure guideline:

Introduction

Remember to introduce yourself and the clinician to the students!

Introduce the paper:

- a) Outline the question(s) it is looking to answer and why that might be important (also why you have chosen the paper)
- b) Go on to describe how the paper answered the question (do not go into whether this was the right/wrong way at this point)
- c) Briefly describe the results and any conclusions made

Briefly analyse the paper

Prepare for this section by using the checklist on the next page.

- a) Go through each section (Title/author; abstract/intro; methods; results; discussion) and highlight any strengths/weaknesses of the study (in general- a Yes is a strength; a No a weakness)
- b) Consider whether or not the paper is answering the question asked by the study and if is important to clinical practice/medical research
- c) Try and think of what further research/experiments/changes in practice etc need to happen next

Try then to set up some discussion points for the paper

- 1) In terms of clinical practice (or in general), does the paper raise any issues?
- 2) Are there any questions you had after reading the paper?

Conclude by summarising and opening up for additional questions

If you have any questions or problems, please don't hesitate to get in touch.

DRAMS Journal Club & Critical Appraisal

This is a very brief overview of how you might analyse medical papers. The idea is to decide whether or not the authors did the appropriate research and have drawn the right conclusions. As simple as this sounds, some articles do particularly well at hiding their flaws. Hopefully this guide will give you some tips to try and identify the good from the bad.

Clinical Trials

•	Start a	t the VERY beginning	
	0	Look at the title - immediately you might be able to tell whether this study could be sensible or not	
	0	Look at the authors - and, in particular, where they work/who employs them and whether they have declared any <i>conflicts of interest</i>	No conflict of interest? V/N/Unsure
		Who funds a study often affects the results of a study (even if the methods look identical from independent research)	
	0	The abstract can be helpful ONLY in identifying the question behind	
		the research and what kind of study is going on. Methods, results and	
		conclusions should really be more thoroughly examined for errors	
		Is the paper a randomised control trial? If not, what kind of study is it?	Y/N
•	Now b	egin to look at the introduction	
	0	Does the paper present a clear question to answer? i.e. can you	Y/N
		identify	
		 <u>P</u>atient/Population group 	
		 Intervention 	
		 <u>C</u>omparison intervention (placebo/current tx) 	
		 <u>O</u>utcome to be measured 	
	0	(Does the title of the paper reflect the question being asked?)	Y/N
	0	<i>Is there a clear reason for asking the question? (e.g. will it save lives)</i>	Y/N
		 Was this reason known before the study or a chance finding discovered as part of 'data dredging'? 	Y/N
	0	Has this question been asked before? ¹	Y/N
•	Metho	ds- probably the <i>most important bit in determining how reliable the</i>	
	paper	is	
	0	Is the study population useful? (i.e. does the study look at a variety of	Y/N
		people rather than males >90 with a mole on their left buttock?!)	
		If there have been exclusions, why?	
		 Likewise, check for dropout rates and final numbers. 	
	0	Has the treatment allocation been completely randomised?	Y/N
	0	Has the assignment of treatments been blinded to	
		 Patient 	Y/N

¹ This may be found in the intro, discussion or it may not be stated at all (and require some of your own background reading). Bear in mind that other studies may have their own faults. If the studies disagree, you may want to try and find out why. If they concur, you also might want to find out why.

	 Practitioner 	Y/N		
	 Family/carer/other 	Y/N		
0	Has this been done in such a way that no-one has the means to check	Y/N		
	the treatment allocation? (i.e. protected system rather than an open			
	system)			
0	Is the only difference between treatment groups the treatments? (e.g.	Y/N		
	no epidemiological/health differences)			
0	Aside from treatment, were both groups treated equally?	Y/N		
0	Are the outcomes measurable in an objective, standard, valid, reliable	Y/N		
	way?			
0	Have patients been analysed in the groups to which they were	Y/N		
	randomly allocated? ²			
Results	 often the most difficult part to truly analyse because of confusion 			
over th	e statistics/analysis			
0	Has the paper reported statistically significant result(s)? (usually			
	p<0.05 or 95% Confidence intervals)			
	 If so, try and work out what the result actually means in 			
	practice.			
	 Do you think that the analysis/format used was correct for this 			
	study? (this can be difficult if you're not a statistician, but			
	some details about different ones are given below)			
The dis	cussion			
0	Are the conclusions of the study an accurate representation of the	Y/N		
	results?			
0	Have the authors recognised any limitations to the study?	Y/N		
0	Have the authors done their utmost to reduce the effect of bias?	Y/N		
0	Do the authors make any suggestions for further research or	Y/N		
	recommend any changes in practice?			
	Do you think they are right?	Y/N		
	Do you think that these are the correct recommendations?	Y/N		
	 Will this directly affect your (or your institution's) practice? 	Y/N		

•

² In some studies, patients in the treatment group may end up switching to control (and vice versa) due to side-effects, contra-indications, refusal of treatment etc. Perhaps counter-intuitively, RCTs should analyse these patients as if they were on their initially allocated treatment (termed intention-to-treat analysis). The reason why this makes a study *more* instead of less reliable is thus: once you start excluding/swapping patients around, the results have been shown to be more easily influenced.

Scientific Literature (Wet-Lab based)

Lab-based research articles can be particularly hard to critically evaluate, even to lab professors, without at least a background knowledge of the field of interest. However, there are still a few basic questions that you should ask of the papers which can help.

Look at the authors and declarations of conflict of interest/funding sources. Could there be an issue here?

Again, start at the very beginning with the Title/Abstract

- Is this a study on *cells, tissues, animals (whether worms, flies, rodents, mammals, primates), or humans?*
- Is this research of basic physiology, pathology/disease mechanisms, drug trials etc?
- Is the study asking a clear question? (NB this may also be found in the Y/N introduction)
 - Again, why are they asking this question? Has it been asked previously? What new evidence is expected to be gained?
 - o Is there a clear hypothesis?
 - Are there clear aims/objectives?
 Y/N

Y/N

In the **methods** section...

- Has the study included all possible control arms of the experiment? (there can Y/N often be several controls)
 Read over the methods. Is this the best way of answering the question? Y/N

 Will there be any part of the answer missing? Can you think of any
 - *flaws?* Has the study used multiple experiments/methods? What is the purpose of
- each and are they connected such to help answer the question? The **results** section
 - For each individual experiment, can you identify the raw data? Y/N o If not, would there be a way of extrapolating the raw data from what is Y/N
 - given?Do you suspect that any data is being hidden?
 - What analysis has been done? Does this show any significant data? Y/N
 - In reality, what does this mean? Try and describe it in layman's terms if you can
- Do you think that this was the correct analysis? Y/N
 Unlike clinical trials, the **discussion** section can often be the most crucial part of the paper to analyse
 - What have been the main conclusions drawn by the authors? Do these fit with Y/N the results? Do they relate with the initial question asked in the introduction?
 - Have the authors identified any designs flaws/limitations of the study? Y/N
 - Have the authors recommended any next steps/future research? Y/N
 - Are the results/conclusions of this study following on from previous research? Y/N

 If so, does this study support/contradict other studies? Y/N
 - Why is this research important? Can you see the clinical relevance? If so, what is it? If not, think about why?

Meta-analysis/Systematic review

These papers are the most important in evidence based medicine, and theoretically should be of the highest quality. Analysing these papers is therefore also important. Again, look for any conflict of interests, funding sources etc that may affect the result. Y/N Unlike studies, these may have a different layout, but essentially should have the same structure. In the introduction ... Y/N Can you identify a clearly defined research question? (use PICO as for clinical trial) • Why is this important? What is the current evidence/opinion on this topic? Will it have an impact on your institution/ your clinical practice? 0 • Has this question been asked before? In the methods section ... Y/N Have at least 2 people been involved in study selection and data extraction? Y/N Has a comprehensive literature search been carried out? • Have at least 2 major databases been searched e.g. Pubmed Central, Y/N EMBASE, MEDLINE? • Have the key words and MESH terms been cited? Y/N • Has the search strategy been cited? Y/N Y/N • Was personal contact with experts saught? Have the authors detailed if or how they limited their review by publication type? Y/N • Did they use objective criteria? E.g. a scoring system, language filter, date Y/N filter, etc. Have the authors provided a list of included and excluded studies? NB this Y/N 0 may be in the references section Have they detailed the characteristics of included studies? i.e. Y/N patient population details, treatment details, duration, etc The scientific quality of the included studies is assessed and Y/N documented?³ Y/N Was this done so appropriately? (Are there any warnings by the authors to interpret Y/N findings with caution due to poor quality studies? Y/N Were the appropriate methods used to combine the individual study findings? Studies should be assessed for homogeneity using the appropriate test Y/N (usually Chi-squared test for homogeneity). Have the authors tested for homogeneity? • If heterogeneity exists, have the authors used a random effects model Y/N and/or have they described why it is clinically relevant to combine the studies? Y/N Has publication bias been assessed? Have the authors actually described doing this (this may be in the form of Y/N 0 a statistical test (e.g. Egger's test, Hedges-Olken) and/or may be in the form of a funnel-plot graph or other)? o If there are less than 10 included studies, generally publication bias cannot be accurately assessed.

Finally, what do the results mean?

³ This is particularly important as a systematic review analysing bad data will produce bad data. Therefore, each included study should be assessed for quality by the author and this should be detailed in the paper. This may be as simple as stating HIGH/LOW, and can most easily be done using scoring systems e.g 'Jadad score' (see appendix), or by analysing for bias.

- Y/N Are the conclusions made by the authors the same ones you would have made? •
- Y/N • Will this have an effect on your/your institutions clinical practice? Y/N
- Have the authors answered the initial question?
- What do they recommend?

Appendix - How results are presented?

Most studies will have one categorical (yes/no) independent variable (e.g. treatment) and one categorical dependent variable (e.g. cardiac event). In these cases the results can be expressed in a number of ways:

What is the measure?	What does it	mean?		
Relative Risk (RR) = risk of the outcome in	The relative i	risk tells us ho	w many time	es more likely
the treatment group / risk of the	it is that an e	vent will occu	ur in the trea	tment group
outcome in the control group.	relative to the control group. An RR of 1 means that			
	there is no difference between the two groups thus,			
	the treatment had no effect. An RR < 1 means that			
	the treatment decreases the risk of the outcome. An			
	RR > 1 means that the treatment increased the risk			
	of the outcome.			
$RR = \frac{P(outcome treatment)}{P(outcome treatment)}$	e.g. if the res	ults were		
P(outcome no treatment)	Treatment Outcome Total		Total	
$=\frac{A/(A+B)}{C/(C+D)}$	incatilient	Yes No		
	Yes	350	410	760
	No	386	366	752
	Total	736	776	1512
	Then the relative risk would be			
$RR = \frac{350/760}{386/752}$		$\frac{7760}{7752} = 0.90$		

NB the **Odds ratio** is an equivalent measure; only it is a calculation based on odds rather than probability (i.e. P/1-P)

	P(outcome treatment)
0P —	1 - P(outcome treatment)
01 -	P(outcome no treatment)
	1 - P(outcome no treatment)

Which in the above example would be

$$\frac{\frac{350/760}{1-(350-760)}}{\frac{386/752}{1-(\frac{386}{752})}} = 0.81$$

Absolute Risk Reduction (ARR) = risk of	The absolute risk reduction tells us the absolute
the outcome in the control group - risk of	difference in the rates of events between the two
the outcome in the treatment group. This	groups and gives an indication of the baseline risk

is also known as the absolute risk	and treatment effect. An ARR of 0 means that there		
difference.	is no difference between the two groups thus, the		
	treatment had no effect.		
In our example, the ARR = (386/752) –	The absolute benefit of treatment is a 5% reduction		
(350/760) = 0.05 or 5%	in the death rate.		
Relative Risk Reduction (RRR) = absolute	The relative risk reduction is the complement of the		
risk reduction / risk of the outcome in the	RR and is probably the most commonly reported		
control group. An alternative way to	measure of treatment effects. It tells us the		
calculate the BRR is to subtract the BR	reduction in the rate of the outcome in the		
from 1 (eg. RRR = 1 - RR)	treatment group relative to that in the control		
	group.		
In our example, the RRR = 0.05/(386/752)	The treatment reduced the risk of death by 10%		
= 0.10 or 10%	relative to that occurring in the control group.		
$\Omega r = RRR - 1 - 0.90 - 0.10 \ or$			
10%			
10/0			
Number Needed to Treat (NNT) = inverse	The number needed to treat represents the number		
of the ARR and is calculated as 1 / ARR.	of patients we need to treat with the experimental		
	therapy in order to prevent 1 bad outcome and		
	incorporates the duration of treatment. Clinical		
	significance can be determined to some extent by		
	looking at the NNTs, but also by weighing the NNTs		
	against any harms or adverse effects (NNHs) of		
	therapy.		
In our example, the NNT = $1/0.05 = 20$	We would need to treat 20 people for 2 years in		
	order to prevent 1 death.		
Confidence Intervals are extremely	In our example:		
important as they describe the			
confidence with which we can reject or	ARR (CI95%)= 0.053 (0.002-0.103)		
accept the null hypothesis (which in this case would be treatment is better than	OR (CI95%)= 0.80 (0.66-0.99)		
no treatment). There are several ways of	Note that if you are using Absolute figures. the CI		
calculating CIs, which can be very	indicates no significance (i.e. reject the hypothesis)		
complicated. Most use computers to	if they cross 0. If using odds figures, the Cl		
calculate them (I have done so using this	indicates no significance if they cross 1.		
link http://www.cebm.net/?o=1040 for			
ARR and			
http://www.hutchon.net/ConfidOR.htm			
for OR).			

The Forest Plot (for metaanalyses)

This is the traditional way of displaying results of a meta-analysis. Each study is given a weight (the size of the square) using more calculations (not important for us but, for interest, they may be things like Mantel-Haenszel weighting) and the confidence intervals are shown. All the confidence intervals should overlap (at least a bit) those of all the other studies- this represents homogeneity. Finally, the diamond at the bottom represents the pooled odds ratio of the studies and the overall result.

Taken from http://www.pmean.com/05/ForestPlots.html on 17/08/13

Jadad Score

Item	Maximum Point	Description	Example
Randomisation	2	1 point if	'The patients were
		randomisation is	randomly assigned into
		mentioned	two groups.'
		1 additional point if	'The randomisation
		the method of	was accomplished
		randomisation is	using a computer-
		appropriate	generated random
			number list, coin toss
			or well-shuffled
			enveloped.'
Blinding	2	1 point if blinding is	'The trial was
		mentioned	conducted in a double-
			blind fashion.'
		1 additional point if	Use of identical tablets
		the method of blinding	or injectables, identical

		is appropriate	vials. Use of tables with similar looks but different tastes.
		Deduct 1 point if the method of blinding is inappropriate (i.e. minimum 0)	Incomplete masking
An account of all patients	1	The fate of all patients in the trial is known. If there are no/missing data, the reason is stated.	'There were 40 patients randomised but the data from 1 patient in the treatment group and 2 in the control were eliminated because of a break in protocol.'